
Implementation of a
Logic-Based Access Control System with

Dynamic Policy Updates and
Temporal Constraints

Vino Fernando Crescini

A thesis submitted for the Degree of

Doctor of Philosophy at

University of Western Sydney

April 2006

Copyright c© 2006 V. F. Crescini

Typeset in Times with TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work. I certify that this

thesis contains no material that has been submitted previously, in whole or in part, for the

award of any other academic degree.

V. F. Crescini

30 April 2006

For Huai Zheng

Acknowledgements

This work would not be possible without my principal supervisor, Assoc. Prof. Yan Zhang.

For the countless hours I spent with him discussing the details of this work, for his guidance

and for his support, I am deeply grateful. My gratitude also goes to Dr. Yun Bai, whose

previous work on access control systems served as an initial motivation for this study.

This research was supported in part by an ARC Linkage-Projects Grant (LP0347878) in

association with Smartlink Solutions Pty. Ltd. I thank Dr. Weiyuan Wang for his continued

support for this project.

I would like to thank the academic staff and research colleagues in the Intelligent Sys-

tems Laboratory research group for their valuable inputs that contributed to this work.

I would also like to express my gratitude to my family, especially my parents, without

whose encouragements and support this work would not be possible.

Finally, I thank my wife, Huai Zheng, the source of all my inspiration, the sole reason

why I get up in the morning and do what I do.

iv

Abstract

As information systems evolve to cope with the ever increasing demand of today’s digital

world, so does the need for more effective means of protecting information. In the early

days of computing, information security started out as a branch of information technology.

Over the years, several advances in information security have been made and, as a result,

it is now considered a discipline in its own right. The most fundamental function of infor-

mation security is to ensure that information flows to authorised entities, and at the same

time, prevent unauthorised entities from accessing the protected information. In a typical

information system, an access control system provides this function.

Several advances in the field information security have produced several access control

models and implementations. However, as information technology evolves, the need for a

better access control system increases. This dissertation proposes an effective, yet flexible

access control system: the PolicyUpdater access control system.

PolicyUpdater is a fully-implemented access control system that provides policy eval-

uations as well as dynamic policy updates. These functions are provided by the use of

a logic-based language, L, to represent the underlying access control policies, constraints

and policy update rules. The system performs authorisation query evaluations, as well as

conditional and dynamic policy updates by translating language L policies to normal logic

programs in a form suitable for evaluation using the well-known Stable Model semantics.

In this thesis, we show the underlying mechanisms that make up the PolicyUpdater

system, including the theoretical foundations of its formal language, the system structure, a

full discussion of implementation issues and a performance analysis.

Lastly, the thesis also proposes a non-trivial extension of the PolicyUpdater system that

is capable of supporting temporal constraints. This is made possible by the integration of

the well-established Temporal Interval Algebra into the extended authorisation language,

language LT , which can also be translated into a normal logic program for evaluation. The

formalisation of this extension, together with the full implementation details, are included

in this dissertation.

v

Contents

Acknowledgements iv

Abstract v

Summary of Works xi

1 Introduction 1
1.1 General Background . 1

1.1.1 Authorisation Rules . 2

1.1.2 Policy Base . 3

1.2 Key Issues . 3

1.2.1 Formal Specification of Policies 3

1.2.2 Policy Updates . 5

1.2.3 Temporal Constraints . 5

1.2.4 Implementation . 6

1.3 Literature Review . 6

1.3.1 Discretionary Access Control . 7

1.3.2 Mandatory Access Control . 8

1.3.3 Role-Based Access Control . 9

1.3.4 Logic-Based Approach . 9

1.3.5 Other Approaches and Considerations 11

1.4 About the Thesis . 13

2 Logic-Based Authorisation Language 15
2.1 Syntax . 15

2.1.1 Declaration Statements . 17

2.1.2 Directive Statements . 19

2.2 Semantics . 21

2.2.1 Domain Description of Language L 22

vi

CONTENTS

2.2.2 Language L∗ . 22

2.2.3 Translating Language L to Language L∗ 24

2.3 Domain Consistency and Query Evaluation 39

2.4 Summary . 44

3 PolicyUpdater System 45
3.1 System Structure . 45

3.1.1 Parsers . 45

3.1.2 Data Structures . 46

3.2 System Processes . 49

3.2.1 Grounding Constraint Variables 50

3.2.2 Policy Updates . 51

3.2.3 Translation to Normal Logic Program 51

3.2.4 Query Evaluation . 60

3.3 Experimental Results . 60

3.4 Case Study: Web Server Application . 63

3.4.1 Policy Description in Language L′ 64

3.4.2 Mapping the Policy to Language L 65

3.4.3 Evaluation of HTTP Requests . 65

3.4.4 Policy Updates by Administrators 66

4 Temporal Constraints in Authorisation Policies 67
4.1 Introduction . 67

4.2 Allen’s Temporal Interval Algebra . 68

4.2.1 Time Points and Time Intervals 69

4.2.2 Time Interval Relations . 69

4.2.3 Inferring New Relations . 71

4.3 Extensions to Allen’s Interval Algebra . 78

4.3.1 Time Points Revisited . 79

4.3.2 Defining Intervals in Terms of Time Points 80

4.4 Formalisation . 82

4.4.1 Syntax . 82

4.4.2 Semantics . 90

4.5 Discussions . 110

5 Implementation Issues 113
5.1 System Structure . 113

5.2 Temporal Reasoner . 115

vii

CONTENTS

5.2.1 Network Structure . 115

5.2.2 Network Operators . 121

5.3 Policy Base Engine . 124

5.3.1 Data Structures . 124

5.3.2 Encoding Atoms . 127

5.3.3 Populating the Policy Base . 133

5.3.4 Calculating the Answer Set . 136

5.3.5 Evaluating Query Expressions . 141

5.4 Experimental Analysis and Discussions 142

6 Conclusion 146

A Language Specification 149
A.1 Language L in Backus-Naur Form . 149

A.2 Language LT in Backus-Naur Form . 156

Bibliography 167

viii

List of Figures

1.1 Structure of a Typical Access Control System 2

1.2 Access Control Lists . 8

1.3 Capability Lists . 8

3.1 Structure of PolicyUpdater . 46

3.2 System Flowchart . 50

3.3 PolicyUpdater Module for the Apache Web Server 64

4.1 Thirteen Temporal Interval Relations . 70

4.2 Network Representation Example . 73

4.3 New Relation RS From Interval I and Interval ι1 76

4.4 New Relation RS From Interval ι0 and Interval I 76

4.5 Network with 3 Default Arcs . 77

4.6 Network after NET.AddRel(ι0, ι1, {BEF , MET , OV R}) 78

4.7 Network after NET.AddRel(ι1, ι2, {STA, FIN}) 79

4.8 Inconsistent Network . 112

5.1 System Flowchart . 114

5.2 Network Structure as a List of Relation Lists 118

5.3 Network Structure Containing before(ι0, ι1) and during(ι0, ι1) 119

5.4 Equivalent Representation of before(ι0, ι1) and during(ι0, ι1) 120

5.5 Network Structure with Default Relations Stored 121

5.6 Network Structure with Default Relations Omitted 121

ix

List of Tables

1.1 An Example of an Access Control Matrix 7

3.1 Symbol Table Data Structure . 47

3.2 Atom Data Structure . 48

3.3 Fact Data Structure . 48

3.4 Constraints Table . 49

3.5 Policy Update Definitions Table . 49

3.6 Policy Update Sequence Table . 49

3.7 Thirteen Test Cases with Different Domain Sizes 61

3.8 Average Computation Times in Seconds 62

4.1 Transitivity Table . 74

5.1 Conceptual Representation of an Interval Network 115

5.2 Temporal Relation Value Assignment . 117

5.3 Network Node Data Structure . 118

5.4 Relation List Node Data Structure . 118

5.5 Policy Base Structure . 125

5.6 Extended Symbol Table . 125

5.7 Extended Atom Data Structure . 126

5.8 Constraints Table Node . 126

5.9 Interval Relation List Node . 127

5.10 Policy Update Declarations Table Node 127

5.11 Conceptual Arrangement of Facts . 128

5.12 Seventeen Test Cases with Different Domain Sizes 143

5.13 Average Computation Times in Seconds (PolicyUpdater 2) 144

x

Summary of Works

The following is a list of publications derived from this study:

• Crescini V. F., Zhang Y.

PolicyUpdater: A System for Dynamic Access Control

International Journal of Information Security

Vol. 5, No. 3, pp. 145-165

2006

• Crescini V. F., Zhang Y.

A Logic Based Approach for Dynamic Access Control

Proceedings of the 17th Australian Joint Conference on Artificial Intelligence (AI

2004, LNCS/LNAI)

Vol. 3339, pp. 623-635

2004

• Crescini V. F., Zhang Y., Wang W.

Web Server Authorisation with the PolicyUpdater Access Control System

Proceedings of the IADIS International Conference (WWW/Internet 2004)

Vol. 2, pp. 945-948

2004

The following is a list of software packages written for this dissertation:

• PolicyUpdater Access Control System Package (Vlad)

http://www.scm.uws.edu.au/˜jcrescin/projects/policyupdater/index.html

• Temporal Reasoner Engine Library (Tribe)

http://www.scm.uws.edu.au/˜jcrescin/projects/tribe/index.html

xi

Chapter 1

Introduction

1.1 General Background

Generally, the term access control refers to a mechanism by which access to resources,

digital or otherwise, are restricted. This restriction is enforced in such a way that only

authorised entities are allowed access to the resources protected by the mechanism, and that

any other entities are not. Access control restrictions are typically expressed as an access

control policy, which defines the rules that determine whether or not an entity is granted

access to protected resources.

In the broadest sense of the term, an access control system is a collection of mechanisms

that enforces access control policies. An access control system may be divided into two

sub-systems: the authentication sub-system and the authorisation sub-system. The goal of

authentication is to obtain and verify the identity of every entity that requests access to pro-

tected resources. This may be achieved by simple mechanisms like username/password ver-

ification, digital certificates, physical/digital keys, or more advanced methods like biometric

authentication which include fingerprint verification, voice print verification and iris/retinal

scanning.

In contrast, an authorisation system’s purpose is to decide whether or not an authenti-

cated entity is to be allowed access to resources or not. It is therefore in the authorisation

sub-system where the access control policy is kept and maintained. This is the reason why

the term access control is often used interchangeably with the term authorisation.

Another system that may be considered an access control sub-system is the enforcement

system. The sole task of this system is to ensure that an authenticated and authorised entity

is allowed access and that all other entities are denied access. While in some literatures the

enforcement system is considered to be part of the authorisation sub-system, others place it

outside the domain of access control altogether. In this view, the task of an access control

system is limited to identifying (authentication) requesting entities and deciding whether to

1

CHAPTER 1. INTRODUCTION

grant or deny (authorisation) access requests. Enforcement of these decisions is left to an

external enforcement system.

Figure 1.1 shows how each sub-system fits into the overall access control system.

Resource

Authentication

Subsytem

Authorisation

Subsytem

Enforcement

Subsytem

ID Database

Policy

Entity

Access Control System

Figure 1.1: Structure of a Typical Access Control System

In this thesis, we shall focus on the authorisation sub-system, or more specifically, how

the policies are expressed, read and maintained. It therefore assumes that the access control

environment in which it is used provides adequate authentication and enforcement mecha-

nisms.

1.1.1 Authorisation Rules

Example 1.1 shows a simple example of a partial policy that defines the authorisation rules

of a file system. Note that in all three, a rule can be broken up into three general sorts:

subjects, access rights and objects. In this example, the subjects are: Alice, Bob and

Charlie; the access rights are: read, write and execute; while the objects are: file0,

file1 and file2. From this example, it is easy to see what each sort is. Subjects are the

entities which are granted or denied access to the resources, access rights are the types of

privileges assigned to subjects for resources, and objects are the resources themselves. An

authorisation rule, therefore, is a binding of subjects, access rights and object.

Example 1.1 Below is an example of a partial file system policy:

• Alice is allowed to read file0

• Bob is allowed to read, write and execute file1

• Charlie is allowed to read file0, file1 and file2

2

CHAPTER 1. INTRODUCTION

1.1.2 Policy Base

A policy base is used by an authorisation system as a full repository of authorisation poli-

cies. Note that it is inaccurate to say that a policy base is simply a collection of authorisation

rules. In Example 1.1 above, the three rules establishes the privileges granted to subjects

Alice, Bob and Charlie. However, the set of three rules are incomplete: it provides no

information as to what authorisations are allowed for Dennis, nor does it state that Alice

is not allowed to write to file1. A policy base must contain a full or complete policy.

To rectify the problem mentioned above, one solution might be to have the policy base

adopt a closed-world assumption where any authorisation requests that are not explicitly

addressed by a rule are rejected. The partial policy shown in Example 1.1 needs only a

slight modification to make it complete:

Example 1.2 A complete file system policy:

• Nobody is allowed any access to any resource, except:

• Alice is allowed to read file0

• Bob is allowed to read, write and execute file1

• Charlie is allowed to read file0, file1 and file2

1.2 Key Issues

In this section, we identify the key issues and requirements of the design and implementa-

tion of an authorisation system.

1.2.1 Formal Specification of Policies

The first issue to consider in an authorisation system is the structure of the policies. In the

previous examples, the policies are defined as abstract descriptions of authorisation rules.

However, in a real access control system, or to continue with the example, a real file system

with hundreds of subjects and several levels of directories will require several pages of

policy descriptions if expressed in this abstract form. A real authorisation system requires

a formalised specification to express policies.

At the very least, a formal specification of an authorisation policy requires (1) a formal

definition of entities (subjects, access rights and objects); (2) a formal specification of rules

to bind together these entities to represent authorisation rules.

3

CHAPTER 1. INTRODUCTION

The first requirement deals with the issue of mapping authorisation entities, conceptual

or otherwise, into formal representations which will be used in the definition of authorisa-

tion policies. In the previous example, this mapping is straight forward: system users to

subjects, file permissions to access rights and files to objects. However, in some scenarios,

entities may be mapped to something more abstract like “accounting documents” as objects

or “administrators” as subjects. Generally, this requirement defines the mapping rules of

entities as well as the formal definitions of the entities themselves.

The second requirement ensures that there is a formal method of expressing the rules

themselves. In Example 1.1, the rules are expressed as a simple binding of the entities.

However, as mentioned before, this example is only a partial policy since it does not state

the rules that deal with other subjects or other objects. Example 1.2 rectified this problem,

but the format of the first rule does not match the subject-access right-object binding format

of the other three rules. This second requirement aims to formalise the definition of each

rule.

For example, to formalise the policy specification of our file system policy, we define

the following:

• An entity is an alphanumeric string.

• Everybody is a special subject entity composed of all defined subjects, AllAccess is

an access right entity composed of all defined access rights, andAllF iles is an object

entity composed of all defined objects.

• An authorisation rule is composed of a boolean value to indicate whether the rule is

a positive or a negative authorisation, followed by a binding of a subject, access right

and object.

• In cases where two rules are in conflict, the most recent rule (between two rules, the

one appearing lower in the list is more recent) overrides the other rule.

As shown above, the policy specification eliminates all ambiguities by providing a for-

mal specification for each rule. Note that the positive and negative authorisation rule speci-

fication also defines how each rule is to be interpreted by the enforcement or access control

system. Another issue handled by the above specification is how to interpret two conflicting

rules. Example 1.3 shows the same policy used in the previous examples expressed in the

above formalisation.

Example 1.3 A formalised file system policy:

• False, Everyone, AllAccess, AllF iles

4

CHAPTER 1. INTRODUCTION

• True, Alice, read, file0

• True, Bob, read, file1

• True, Bob, write, file1

• True, Bob, execute, file1

• True, Charlie, read, file0

• True, Charlie, read, file1

• True, Charlie, read, file2

1.2.2 Policy Updates

Up to this point, we have been dealing only with static policies. A typical policy base,

however, requires at least a means of changing the rules of the policy. A naive authorisation

system implementation might only have the ability to handle static policies, but this would

require a system reset every time the policy is changed. A robust authorisation system

therefore needs a built-in mechanism that would allow its policy base to be changed or

updated at run time. We call such updates that are performed at run time dynamic updates.

Continuing from our previous examples, suppose we need to add another file, say file3,

into the policy. With the current policy description, this file is “caught” by the negative au-

thorisation rule which makes this file unreadable, unwritable and unexecutable by everyone.

Now suppose we wish to make it readable by all current subjects, but not by any subject that

might be added later. To do this, we need to add three new rules to the policy: one forAlice,

one for Bob and another for Charlie. Similarly, if we wish to revoke the write permission

held by Bob for file1, we simply update the policy base by deleting the appropriate rule.

While the policy updating scenario described above is simple, more complex update

requirements do exist. One such requirement might arise in situations where a policy needs

to be updated only when certain conditions are met. For example, we might require the

subject Alice to be granted a write access right to file2 if she already holds a read access

right to the same file. Such updates are called conditional updates.

1.2.3 Temporal Constraints

An authorisation rule composed only of the binding of a subject, an access right and an

object represents a single authorisation that answers the question of who is allowed what

permission to which resource. There is nothing to express when this authorisation rule is to

hold. So far, in the examples given in the previous sections, we have made the assumption

5

CHAPTER 1. INTRODUCTION

that these rules apply at all times. That is, from some time in the past, either from the time

the rules were defined or the time the access control system is activated, to the time the

system is shut down. However, there are special situations where authorisation rules need

to specify the time at which it is in effect as well as the usual subject-access right-object

binding. Such situations might arise, for example, in a roster-based organisation where one

user is granted access to some resource from 9AM to 2PM, another user from 2PM to 8PM

and so forth.

This need to express time in authorisation rules can be easily satisfied by extending the

rule specification to a quadruple binding of subjects, access rights, objects and time. For

example, the rule (Alice, read, file0, 1PM to 2PM) might be used to represent a rule

granting Alice read access to file0 at lunch time. However, this approach is insufficient to

express time-bound rules where the relationship between the time attributes is more impor-

tant than the time attributes themselves. For example, this approach is unable to express the

following abstract rule:

Alice is authorised to read file file0 only while Bob holds read and write access to the

same file.

An authorisation system with support for temporal constraints must have its formal

policy specification defined to express rules such as this.

1.2.4 Implementation

Obviously, a policy description is only as good as the authorisation system implementation

on which it is used. The implementation of an authorisation system needs to address most

importantly, the internal details of its policy base. The definition of the data structures to

store entities and rules need to be considered, as well as the algorithms that make up the

internal processes. Scalability is particularly important since a typical authorisation sys-

tem policy is composed of a huge number of rules, and because each authorisation request

usually requires instant response, efficiency of algorithms must also be taken into account.

As for the specification of policies, sufficient formalisation details must include, if, for

example, formalised as a language, the syntax and semantics for implementation.

1.3 Literature Review

In this section, we review the different approaches to access control that have been proposed

or implemented over the years.

6

CHAPTER 1. INTRODUCTION

1.3.1 Discretionary Access Control

The Discretionary Access Control (DAC) model is an authorisation model where policies

are defined in such a way that a subject’s identity determines what access rights it holds over

which objects [16]. The two distinct characteristics of this model are: (1) every resource

(object) in the system is owned by a subject; and (2) authorisation rules in the policy are

bindings of subjects, access rights and objects. This access control model is discretionary

in the sense that object owners (subjects) are capable of granting or revoking other subjects

access rights to objects that they own at their discretion.

A very simple authorisation system based on the DAC model is the access control ma-

trix, which was first proposed by Lampson [37], then subsequently extended in [29, 18, 31].

The access control matrix is a simple yet powerful policy base model where every subject’s

access rights of every object are stored. The matrix is composed of rows that represent the

subjects of the system. Each column represents the objects of the system. The subject-

object intersection, a cell, contains the access rights held by that subject to that object. An

empty cell therefore means that the subject in that row do not possess any access rights to

the object in that column. Table 1.1 shows an access control matrix with the same policy

used in Example 1.3.

file0 file1 file2
Alice r

Bob r,w,x
Charlie r r r

Dennis

Table 1.1: An Example of an Access Control Matrix

As one might imagine, an access control matrix for a system composed mainly of user’s

personal data will be very sparse: only cells of intersecting objects and their owners will

have access right entries stored in them. As a result, some applications of access control ma-

trices take up more space that what is actually needed. Another implementation, the access

control list [37], resolves this issue by storing authorisation rules in individual lists instead

of one common matrix. In an access control list implementation, the access control system

maintains a list of subjects with access rights for each object in the system. Access control

lists are typically used to implement low level authorisation mechanisms like those used in

file systems. It should be noted that very few systems actually implement an access control

matrix. Indeed, the access control matrix was meant only as a conceptual representation of

the policy base, and systems such as those based on access control lists are considered as

implementations of the access control matrix model.

7

CHAPTER 1. INTRODUCTION

Figure 1.2 shows a set of access control lists that contains the same policy stored in the

access control matrix in Table 1.1.

File 0 File 1 File 2

r

r r

rwx rAlice

Charlie

Bob

Charlie

Charlie

Figure 1.2: Access Control Lists

In some situations, it is more convenient to store authorisation policies in such a way

that for each subject, the system maintains a capability list [23, 39] which contains all

access rights the subject holds for certain objects. Since each subject has its own capability

list, there might be cases where a certain subject’s capability list is empty. This means the

subject is not authorised to access any object. Figure 1.3 shows a set of capability lists that

contains the same policy stored in the access control list shown in 1.2.

0File r 1File rwx 0File r

1File r

2File r

Alice Charlie DennisBob

Figure 1.3: Capability Lists

1.3.2 Mandatory Access Control

The Mandatory Access Control (MAC) model introduces the concept of defining different

levels of security. These levels are treated as security labels or attributes which represent

the level of sensitivity when applied to objects, and define clearance level when applied to

subjects. A classical example of security labels is the classification system formalised by

Bell and LaPadula [9, 10] for the U.S. Department of Defense: (from least to most sensitive)

unclassified, confidential, secret, top secret.

A subject is only allowed to read objects of equal or lower security level than the level

assigned to the subject. Conversely, a subject can only write to objects that are of equal or

higher security level than the level assigned to the subject. These two conditions are known

as the read down and write up principles of MAC. They ensure that information can only

be passed from a low security level to a high security level and not the other way.

8

CHAPTER 1. INTRODUCTION

It is mandatory in the sense that every subject and object must be assigned security

labels, and as opposed to owner assignments of access rights in DAC, these assignments are

made by administrators.

1.3.3 Role-Based Access Control

A recently proposed alternative to the DAC and MAC models is the role-based access con-

trol (RBAC) model. RBAC was first proposed in [24, 25], then later, a full RBAC framework

in [55]. In most organisations, different roles are defined to achieve certain tasks. A per-

son undertaking a particular role is granted access to all resources associated with that role.

A person’s authorisations gained from assuming a role are revoked once the person has

relinquished the role or assumed another role. For example, in a hotel environment, the

management role is assigned access to the hotel’s accounting files, payroll database etc.,

while the front desk role’s authorisation is limited to the guest and rooms database. A per-

son assuming the role of a hotel manager is granted access to the resources assigned to that

role, but the moment the person drops that role to assume the role of a front desk officer,

access to these managerial resources are also dropped.

The goal of the RBAC model is to closely reflect this organisational structure of policies

into an authorisation system. In this model, authorisations to access objects are assigned to

roles, not to subjects directly. Subjects are then assigned different roles that they are allowed

to partake. The strength of the RBAC model lies in its ability to accurately model abstract

authorisation policies in real-world organisations. The abstraction of authorisation rules

from subjects allows better policy management because the assignment of roles to subjects

is easier to perform than direct assignment of authorisations to subjects.

1.3.4 Logic-Based Approach

An effective approach to access control is the logic-based access control approach. In this

approach, instead of explicitly defining all access-rights of all subjects for all objects in a

domain, a set of logical facts and rules are used to define the policy base.

One such model was proposed by Abadi et al. in [1]. Their model is based on a modal

logic language designed for access control. However, this language focuses mainly on the

delegation of authorisations and the concept of roles, rather than the expression of authori-

sation policies.

In 1992, Woo and Lam proposed an authorisation approach based on the concept that

the semantics of authorisation should be separated from the low-level and system-dependent

implementation mechanisms [64, 65]. In this approach, the policy is expressed as a set of

rules written in terms of a first-order logic authorisation language. In this language, an

9

CHAPTER 1. INTRODUCTION

atom is a propositional constant of the form a(s, o) representing a binding of a subject s,

an access right a and an object o. A positive authorisation atom is written as a+(s, o),

while a negative authorisation atom is written as a−(s, o). As a first-order logic language,

it includes the usual notions of variables, negation, conjunction and disjunction. A literal

is an atom or its negation, while a formula is either a literal, a conjunction of literals or a

disjunction of literals. Rules are composed of formulas written in the form shown below:

f :f ′

g

where

f is the prerequisite

f ′ is the assumption

g is the consequent

The rule above is interpreted as the following statement: “If f holds, and there is no reason

not to believe that f ′ also holds, then g is also believed to hold”. This rule construct is

similar to the default construct used in default logic [50] where the absence of proof may

be used as a condition for a rule.

The rules are evaluated into a policy base. In this approach, the policy base is defined as

a 4-tuple: (P+, P−, N+, N−) where each component is a set of subject-access right-object

tuples. P+ contains a set of tuples that explicitly grant authorisations. For example, to

evaluate whether subject s is given access right a to object o, one must check whether (s,

a, o) ∈ P+ is true. N+ contains a set of tuples that explicitly deny authorisations. P− and

N− records authorisations that should not be explicitly granted or denied, respectively.

Because the Woo and Lam approach explicitly expresses both positive and negative

authorisations as well as conditional rules, it is not difficult to see that this approach provides

a more flexible means of expressing authorisation policies. Example 1.4 shows the logic-

based equivalent of the policy represented by the access control matrix shown in Table 1.1.

Example 1.4 In this example, the first 7 rules explicitly grant different authorisations to

specific subjects for specific objects. The final rule makes use of variables to deny all au-

thorisations that are not explicitly granted.

True:True
r+(Alice,file0)

True:True
r+(Bob,file1)

True:True
w+(Bob,file1)

True:True
x+(Bob,file1)

10

CHAPTER 1. INTRODUCTION

True:True
r+(Charlie,file0)

True:True
r+(Charlie,file1)

True:True
r+(Charlie,file2)

True:A−(S,O)
A−(S,O)

Note that the Woo and Lam model uses a single policy description for authorisation.

Indeed, several authorisation models and their respective access control mechanism imple-

mentations [16] operate under a single authorisation policy. Such systems usually have this

policy intertwined with its authorisation mechanism. As a consequence, such systems are

limited to one specified authorisation policy, even though the authorisation requirement may

change over time.

In response to this problem, Jajodia et al. proposed a logic-based authorisation lan-

guage, the Authorization Specification Language [32]. Later, the approach was generalised

into a full authorisation framework, the Flexible Authorisation Framework [33, 34]. With

this framework, it is possible to enforce multiple authorisation policies within a single au-

thorisation system. The framework itself is based on the logic-based authorisation language,

through which administrators are allowed to choose, at their discretion, which policy is to

be used. Other features of this framework include support for groups and roles, conflict

resolution mechanisms and support for different decision strategies.

Another approach, proposed by Bertino et al. [13], uses an authorisation mechanism

based on ordered logic. This powerful mechanism supports both positive and negative au-

thorisations as well as implicit rule derivations and default propositions. Other notable fea-

tures of this system include the distinction between weak and strong authorisations, support

for administrative authorisation delegation and more importantly, conflict resolution.

These systems, although effective, lack the details necessary to address the issues in-

volved in the implementation of such systems. Another logic-based authorisation system

was proposed by Halpern and Weissman [30]. Their approach focuses on the tractability

of the policy reasoning mechanism by restricting the expressiveness of the policy language.

This is achieved by using only a subset of first-order logic in the policy language. However,

this tradeoff means that although the language provides sufficient expressive power for most

applications, this approach cannot handle default propositions or policy updates.

1.3.5 Other Approaches and Considerations

The Policy Description Language, or PDL, developed by Lobo et al. [42], is a language for

representing event and action oriented generic policies. PDL is later extended by Chomicki

et al. [17] to include policy monitors which, in effect, are policy constraints. Bertino et

11

CHAPTER 1. INTRODUCTION

al. [14, 15], again took PDL a step further by extending policy monitors to allow users to

express preferred constraints. While these generic languages are expressive enough to be

used for access control systems, systems built for such languages will not have the ability

to dynamically update the policies.

Sandhu et al. [54, 56, 57] was first to introduce the concept of transformation, or more

specifically, non-monotonic transformation of access rights. For all intents and purposes,

the term transformation is synonymous with our definition of policy updating. The non-

monotonic property allows access rights to be revoked as well as granted in a policy update.

Meadows [44], formalised the concept of dynamic upgrading of policies.

Bai and Varadharajan [5, 6, 7] extended the concept of dynamic updates by developing

an authorisation model based on a language that is not only capable of handling policy

updates, but also sequences of policy updates. Because this model is logic-based, other

key features include the ability to express default propositions and a mechanism for conflict

resolution. However, the major weakness of this framework is its lack of sufficient details

for full system implementation.

Other access control approaches such as those proposed in [51, 52, 40] focus on authori-

sation delegation. Although such systems are useful in distributed or decentralised systems,

a common deficiency is their inability to handle default propositions and/or policy updates.

Recently, Ray [49] proposed a formalism for updating access control policies in real-

time. Although this formalism provides a set of algorithms aimed at the implementation of

an authorisation system capable of performing dynamic policy updates, it only considers

simple authorisation policies with no support for negative authorisations, conditional rules

or conflict resolution.

Bertino et al. introduced an authorisation model in [11] that is capable of expressing

temporal information in its policies. By including time interval attributes to rules, the model

allows authorisations to be bound to a specific time period, or hold only for a specific time

interval. In addition to this, the model also supports derivation rules based on temporal

propositions. This feature allows new temporal authorisations to be valid on the basis of

the presence or absence of other temporal authorisations. This model was later extended

and revised in [12] to support periodic or cyclic temporal authorisations. In these mod-

els, the temporal derivation rules consider the validity of authorisations that are bound by

time. However, the model cannot express relations between the time intervals themselves,

as discussed in Section 1.2.3.

Ruan et al. [53] developed another logic-based authorisation model with support for

delegation of temporal authorisations. Again, the main weakness of this model is that re-

lations between time intervals cannot be expressed. Another authorisation model proposed

by Atluri and Gal [4] focuses on securing web portals. In this model, the authorisations are

12

CHAPTER 1. INTRODUCTION

derived based on the temporal characteristics of the data (objects) and their relationships

with other data. Although their work provides full implementation details, the model itself

does not permit the assignment of temporal attributes to the authorisation rules.

The Extensible Access Control Markup Language (XACML) [48] is an XML-based

access control language ratified by the Organization for the Advancement of Structured

Information Standards (OASIS) in 2003 (version 1.0) and in 2005 (version 2.0). XACML

not only defines a generalised language for representing authorisation rules and policies but

also a format for expressing query requests and replies. Because it is based on XML, the

language provides a flexibility that can be applied to model many different authorisation

requirements. The extensible nature of the language allows it to be adapted to suit new

requirements. Because XACML is a widely accepted standard, several implementations

such as that of Sun Microsystems1already exist. However, one of the major drawbacks of

XACML is its inability to express logical rules the way logic-based authorisation languages

can. Furthermore, although extensions can be made to support time-based authorisation

policies, the language has no native support for expressing relations between time intervals.

1.4 About the Thesis

The work presented in this thesis focuses on the key issues of authorisation systems outlined

in Section 1.2, and at the same time addresses the deficiencies and limitations of existing

access control models and approaches discussed in the previous section. In a nutshell, the

work revolves around the formalisation and implementation of a logic-based authorisation

system, PolicyUpdater, with support for constraint rules with default propositions, dynamic

and conditional policy updates and temporal constraints.

The rest of the thesis is organised as follows:

The aim of Chapter 2 is to provide a means to formally express high-level authorisation

policies with a logic-based formal specification language, languageL. The primary strength

of this language lies in its ability to express logical rules and policy updates, as discussed in

Sections 1.2.1 and 1.2.2. The chapter discusses the language’s syntax and semantics, and by

doing so, addresses the underlying mechanisms by which high level authorisation policies

are expressed and evaluated.

Chapter 3 introduces the PolicyUpdater authorisation system which uses language L to

express policies. The chapter gives an overview of the PolicyUpdater system as a whole,

with its internal and external components. The chapter also includes a few algorithms that

outline the system processes. An experiment that shows the relationship between input size
1Sun Microsystems XACML implementation from http://sunxacml.sourceforge.net

13

CHAPTER 1. INTRODUCTION

and execution time is also discussed in this chapter. Finally, the chapter is concluded by a

case study which describes the application of PolicyUpdater as the primary authorisation

system of a web server.

Chapter 4 is divided into two parts: the first part describes an interval algebra used to

express relationships between temporal intervals, while the second part introduces language

LT , another authorisation language. Language LT is a non-trivial extension of language L
that has enough expressive power to assign temporal attributes to authorisation rules and,

by the integration of the interval algebra, allows the representation of temporal interval rela-

tions. The chapter includes a description of the extended language’s syntax and semantics,

as well as a discussion on query evaluation, policy updates and consistency checking.

Chapter 5 provides a full comprehensive implementation discussion of the extended

PolicyUpdater system, with the specification of data structures and algorithms. The first

half of the chapter outlines the full implementation details of a temporal interval relation

reasoner. The second half of the chapter then describes the integration of this interval rela-

tion reasoner into an authorisation engine, thereby outlining the internal mechanisms of the

extended PolicyUpdater system not previously discussed in Chapter 3.

Finally, Chapter 6 summarises the contributions of the work and outlines several future

research directions.

Note that parts of this dissertation have already been published in journals and confer-

ence papers [20, 19, 22]. Furthermore, a paper on the extended PolicyUpdater system [21]

will be submitted soon.

14

Chapter 2

Logic-Based Authorisation Language

Language L1is a first-order logic language that represents a policy base for an authorisa-

tion system. Two key features of the language are: (1) the language provides a means to

conditionally and dynamically update the policy base and (2) the semantics of the language

allows a logic-based evaluation of an updated policy base to support authorisation queries.

2.1 Syntax

Logic programs of language L are composed of language statements, each terminated by a

semicolon “;” character. C-style comments delimited by the “/*” and “*/” characters may

appear anywhere in the logic program. The full BNF specification of the language is shown

in Section A.1.

Components of Language L

Language L statements are made up of one or more of the following components: identi-

fiers, atoms, facts and expressions.

• Identifiers

The most basic unit of languageL is the identifier. Identifiers are used to represent the

different components of the language. They are classified into three main categories:

1. Entity Identifiers are used to represent constant entities that make up a logical

atom. They are divided into three types, with each type divided further into the

singular and group entity sub-types:

(a) Subjects: e.g. alice, lecturers, user-group.
1The full language L specification was first introduced in [19].

15

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

(b) Access Rights: e.g. read, write, own.

(c) Objects: e.g. file, database, directory.

An entity identifier is defined as a single, lower-case alphabetic character, fol-

lowed by 0 or more alphanumeric and underscore characters. The following

regular expression shows the syntax of entity identifiers:

[a-z][a-zA-Z0-9]

2. Policy Update Identifiers are used for the sole purpose of naming a policy up-

date. These identifier names are then used as labels to refer to policy update

declarations and directives. As labels, identifiers of this class occupy a differ-

ent namespace from entity identifiers. For this reason, policy update identifiers

share the same syntax with entity identifiers:

[a-z][a-zA-Z0-9]

3. Variable Identifiers are used as place-holders for entity identifiers. To distin-

guish them from entity and policy update identifiers, variable identifiers are

prefixed with an upper-case character, followed by 0 or more alphanumeric and

underscore characters. The first character of a variable identifier indicates its

type (“S” for subject, “A” for access right and “O” for object). If the second

character is an “S”, then the variable is a place-holder for a singular entity while

a “G” indicates that it is a place-holder for a group entity. The following regular

expression shows the syntax of variable identifiers:

[SAO][SG][a-zA-Z0-9]

• Atoms

An atom is composed of a relation with 2 to 3 entity or variable identifiers that repre-

sents a logical relationship between the entities. There are three types of atoms:

1. Holds. An atom of this type states that the subject identifier sub holds the access

right identifier acc for the object identifier obj.

holds(<sub>, <acc>, <obj>)

2. Membership. This type of atom states that the singular identifier elt is a member

or element of the group identifier grp. It is important to note that identifiers elt

and grpmust be of the same base type (e.g. singular subject and group subject).

memb(<elt>, <grp>)

16

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

3. Subset. The subset atom states that the group identifiers grp0 and grp1 are of

the same types and that group grp0 is a subset of the group grp1.

subst(<grp-0>, <grp-1>)

• Facts

A fact states that the relationship represented by an atom or its negation holds in

the current context. Facts are negated by the use of the negation operator “!”. The

following shows the formal syntax of a fact:

[!]<holds-atom> | <memb-atom> | <subst-atom>

Note that facts may be made up of atoms that contain variable identifiers. Facts with

no variable occurrences are called ground facts.

• Expressions

An expression is either a fact or a logical conjunction of facts, separated by the comma

“,” character:

<fact-0> [, <fact-1> [, ...]]

Expressions that are made up of only ground facts are called ground expressions.

2.1.1 Declaration Statements

These statements are used to declare the different rules that make up the policy base.

• Entity Identifier Declarations

All entity identifiers (subjects, access rights, objects and groups) must first be de-

clared before any other statements to define the entity domain of the policy base.

The following entity declaration syntax illustrates how to define one or more entity

identifiers of a particular type.

ident sub|acc|obj[-grp] <entity-id>[, ...];

• Initial Fact Declarations

The initial facts of the policy base, those that hold before any policy updates are

performed, are declared by using the following syntax:

17

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

initially <ground-exp>;

• Constraint Declarations

A constraint statement is a logical rule that holds regardless of any changes that may

occur when the policy base is updated. Constraint rules are true in the initial state and

remain true after any policy update.

The constraint syntax below shows that in any state of the policy base, expression

exp0 holds if expression exp1 is true and there is no evidence that exp2 is true. The

with absence clause allows constraints to have a default proposition behaviour, where

the absence of proof that an expression holds satisfies the clause condition of the

proposition.

It is important to note that the expressions exp0, exp1 and exp2 may be non-ground

expressions, which means an identifier occurring within these expressions may be a

variable.

always <exp-0>

[implied by <exp-0>

[with absence <exp-1>]];

• Policy Update Declarations

Before a policy update can be applied, it must first be declared by using the following

syntax:

<update-id>([<var-id>[, ...]])

causes <exp-0>

[if <exp-1>];

upd-id is the policy update identifier to be used in referencing this policy update. The

optional parameter var-id is a list which contains the variable identifiers occurring in

expressions exp0 and exp1 and will be eventually replaced by entity identifiers when

the update is referenced. The postcondition expression exp1 is an expression that will

hold in the state after this update is applied. The expression exp1 is a precondition

expression that must hold in the current state before this update is applied.

Note that a policy update definition will have no effect on the policy base until it is

applied by the update directive described in the following section.

18

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

2.1.2 Directive Statements

These statements are used to issue policy update and query directives.

• Policy Update Directives

The policy update sequence list contains a list of references to define policy updates

in the domain. The policy updates in the sequence list are applied to the current state

of the policy base one at a time to produce a policy base state against which queries

can be evaluated.

The following four directives are used for policy update sequence list manipulation.

1. Adding an update into the sequence. Defined policy updates are added into the

sequence list through the use of the following directive:

seq add <update-id>([<entity-id>[, ...]]);

where update-id is the identifier of a declared policy update and the entity-id

list is a comma-separated list of entity identifiers that will replace the variable

identifiers that occur in the declaration of the policy update.

2. Listing the updates in the sequence. The following directive may be used to list

the current contents of the policy update sequence list.

seq list;

This directive is answered with an ordinal list of policy updates in the form

<n> <update-id>([<entity-id>[, ...]])

where n is the ordinal index of the policy update in the sequence list starting at

0. update-id is the policy update identifier and the entity-id list is the comma-

separated list of entity identifiers used to replace the variable identifier place-

holders.

3. Removing an update from the sequence. The syntax below shows the directive

used to remove a policy update reference from the list. n is the ordinal index of

the policy update to be removed. Note that removing a policy update reference

from the sequence list may change the ordinal index of other update references.

seq del <n>;

19

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

4. Computing an update sequence. The policy updates in the sequence list does

not get applied until the compute directive is issued. The directive causes the

policy update references in the sequence list to be applied one at a time in the

same order that they appear in the list. The directive also causes the system to

generate the policy base models against which query requests can be evaluated.

compute;

• Query Directives

A ground query expression may be issued against the current state of the policy base.

This current state is derived after all the updates in the update sequence have been

applied, one at a time, to the initial state. Query expressions are answered with a true,

false or unknown, depending on whether the queried expression holds, its negation

holds, or neither, respectively. Syntax is as follows:

query <ground-exp>;

Example 2.1 The following language L program code listing shows a simple rule-based

document access control system scenario.

In this example, the subject alice is initially a member of the subject group grp2, which

is a subset of group grp1. The group grp1 also initially holds a read access right for the

object file. The constraint states that if the group grp1 has read access for file, and

no other information is present to indicate that grp3 does not have write access for file,

then the group grp1 is granted write access for file. For simplicity, we only consider one

policy update delete read and a few queries that are evaluated after the policy update is

performed.

/* entity declarations */

ident sub alice;

ident sub-grp grp1, grp2, grp3;

ident acc read, write;

ident obj file;

/* initial fact statement */

initially

memb(alice, grp2),

20

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

holds(grp1, read, file),

subst(grp2, grp1);

/* constraint statement */

always holds(grp1, write, file)

implied by

holds(grp1, read, file)

with absence

!holds(grp3, write, file);

/* policy update declaration */

delete read(SG0, OS0)

causes !holds(SG0, read, OS0);

/* add delete read to policy update sequence list */

seq add delete read(grp1, file);

compute;

/* queries */

query holds(grp1, write, file);

query holds(grp1, read, file);

query holds(alice, write, file);

query holds(alice, read, file);

2.2 Semantics

After giving a detailed syntactic definition of language L, we now define its formal seman-

tics. The semantics of language L is based on the well-known answer set (stable model)

semantics of extended logic programs proposed by Gelfond and Lifschitz [27]. The defini-

tion below formally defines the answer set of a logic program.

Definition 2.1 Given an extended logic program π composed of ground facts and rules that

21

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

do not have the negation-as-failure operator not and a set F of all ground facts in π. A

set λ is then said to be an answer set of π if it is the smallest set that satisfies the following

conditions:

1. For any rule of the form ρ0← ρ1, . . ., ρn where n≥ 1, if ρ1, . . ., ρn ∈ λ, then ρ0 ∈ λ.

2. If λ contains a pair of complementary facts (i.e. a fact and its negation), then λ = F .

For a ground extended logic program π that is composed of rules that may have the

negation-as-failure operator not, a set λ is the answer set of π if and only if λ is the answer

set of π′, where π′ is obtained from π by deleting the following:

1. Each rule that contains a fact of the form not ρ in its body where ρ ∈ λ.

2. All facts of the form not ρ in the bodies of the remaining rules.

2.2.1 Domain Description of Language L

The definition below gives a formal definition of the domain description of language L.

Definition 2.2 The domain descriptionDL of language L is defined as a finite set of ground

initial state facts, constraint rules and policy update definitions.

In addition to the domain description DL, language L also includes an additional or-

dered set: the sequence list ψ. The sequence list ψ is an ordered set that contains a sequence

of references to policy update definitions. Each policy update reference consists of the pol-

icy update identifier and a series of zero or more identifier entities to replace the variable

place-holders in the policy update definitions.

2.2.2 Language L∗

In language L, the policy base is subject to change, which is triggered by the application of

policy updates. Such changes bring forth the concept of policy base states. Conceptually,

a state may be thought of as a set of facts and constraints of the policy base at a particular

instant. The state transition notation below shows that a new state PB′ is generated from

the current state PB after the policy update u is applied.

PB −→u PB′

This concept of a state means that for every policy update applied to the policy base,

a new instance of the policy base or a new set of facts and constraints are generated. To

22

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

precisely define the underlying semantics of domain description DL in language L, we

introduce language L∗, which is an extended logic program representation of language L,

with state as an explicit sort.

Language L∗ contains only one special state constant S0 to represent the initial state of

a given domain description. All other states are represented as a resulting state obtained by

applying the Res function. The Res function takes a policy update reference u (u ∈ ψ) and

the current state σ as input arguments and returns the resulting state σ′ after update u has

been applied to state σ:

σ′ = Res(u, σ)

Given an initial state S0 and a policy update sequence list ψ, each state σi (0 ≤ i ≤ |ψ|)
may be represented as follows:

σ0 = S0

σ1 = Res(u0, σ0)
...

σ|ψ| = Res(u|ψ|−1, σ|ψ|−1)

Substituting each state with a recursive call to theRes function, the final state S|ψ| is defined

as follows:

S|ψ| = Res(u|ψ|−1, Res(. . ., Res(u0, S0)))

Entities

The entity set E is the union of six disjoint entity sets: single subject Ess, group subject Esg,

single access right Eas, group access right Eag, single object Eos and group object Eog. Each

entity in set E corresponds directly to the entity identifiers of language L.

E = Es ∪ Ea ∪ Eo

Es = Ess ∪ Esg

Ea = Eas ∪ Eag

Eo = Eos ∪ Eog

23

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

Atoms

The main difference between language L and language L∗ lies in the definition of an atom.

Atoms in language L∗ represent a logical relationship of two to three entities, as with atoms

of language L. Furthermore, atoms of language L∗ extends this definition by defining the

state of the policy base in which the relationship holds. In this paper, atoms of language L∗

are written with the hat character (ˆholds, ˆmemb and ˆsubst) to differentiate from the atoms

of language L. The atom set Aσ is the set of all atoms in state σ.

Aσ = Aσh ∪ Aσm ∪ Aσs
Aσh = { ˆholds(s, a, o, σ) | s ∈ Es, a ∈ Ea, o ∈ Eo}

Aσm = Aσms ∪ Aσma ∪ Aσmo
Aσs = Aσss ∪ Aσsa ∪ Aσso
Aσms = { ˆmemb(e, g, σ) | e ∈ Ess, g ∈ Esg}

Aσma = { ˆmemb(e, g, σ) | e ∈ Eas, g ∈ Eag}

Aσmo = { ˆmemb(e, g, σ) | e ∈ Eos, g ∈ Eog}

Aσss = { ˆsubst(g1, g2, σ) | g1, g2 ∈ Esg}

Aσsa = { ˆsubst(g1, g2, σ) | g1, g2 ∈ Eag}

Aσso = { ˆsubst(g1, g2, σ) | g1, g2 ∈ Eog}

Facts

A fact is a logical statement that makes a claim that an atom either holds or does not hold at

a particular state. A fact that does not hold is said to be a classically negated fact [28]. The

following is the formal definition of fact ρ̂ in state σ:

ρ̂σ = [¬]α̂, α̂ ∈ Aσ

2.2.3 Translating Language L to Language L∗

Given a domain description DL of language L, we translate DL into an extended logic

program of language L∗, as denoted by Trans(DL). The semantics of DL are provided

by the answer sets of the extended logic program Trans(DL). Before we can fully define

Trans(DL), we must first define the following functions:

The CopyAtom() function takes two arguments: an atom α̂ of language L∗ at some

state σ and another state σ′. The function returns an equivalent atom of the same type and

with the same entities, but in the new state specified.

24

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

CopyAtom(α̂, σ′) =

ˆholds(s, a, o, σ′), if α̂ = ˆholds(s, a, o, σ)

ˆmemb(e, g, σ′), if α̂ = ˆmemb(e, g, σ)

ˆsubst(g1, g2, σ′), if α̂ = ˆsubst(g1, g2, σ)

Another function, TransAtom(), takes an atom α of language L and an arbitrary state

σ and returns the equivalent atom of language L∗.

TransAtom(α, σ) =

ˆholds(s, a, o, σ), if α = holds(s, a, o)

ˆmemb(e, g, σ), if α = memb(e, g)

ˆsubst(g1, g2, σ), if α = subst(g1, g2)

The TransFact() function is similar to the TransAtom() function, but instead of

translating an atom, it takes a fact from language L and a state then returns the equiva-

lent fact in language L∗.

Initial Fact Rules

The process of translating initial fact expressions of language L to language L∗ rules is a

trivial procedure: translate each fact that make up the initial fact expression of language L
with its corresponding equivalent initial state atom of language L∗. Given the following

initially statement in language L:

initially ρ0, ..., ρn;

The language L∗ translation of this statement is shown below:

ρ̂0←
...

ρ̂n←

where

ρ̂i = TransFact(ρi, S0),

0 ≤ i ≤ n

As shown above, the number of initial fact rules generated from the translation is the

number of facts n in the given language L initial fact expression. The following code shows

a more realistic example of language L initially statements:

25

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

initially

holds(admins, read, sys data),

memb(alice, admins);

initially

memb(bob, admins);

In language L∗, the above statements are translated to:

ˆholds(admins, read, sys data, S0)←
ˆmemb(alice, admins, S0)←
ˆmemb(bob, admins, S0)←

Constraint Rules

Each constraint rule in language L is expressed as a series of logical rules in language L∗.

Given that all variable occurrences have been grounded to entity identifiers, a constraint in

language L, with n0, n1, n2 ≥ 0 may be represented as:

always ρ00, ..., ρ0n0

implied by ρ10, ..., ρ1n1

with absence ρ20, ..., ρ2n2
;

Each fact in the always clause of language L corresponds to a new rule, where it is the

consequent. Each of these new rules will have expression ρ1 in the implied by clause as the

positive premise and the expression ρ2 in the with absence clause as the negative premise.

ρ00 ← ρ10 , . . . , ρ1n1
, not ρ20 , . . . , not ρ2n2

...

ρ0n0
← ρ10 , . . . , ρ1n1

, not ρ20 , . . . , not ρ2n2

Under the definition of constraint rules, each of the rules listed above must be made to

hold in all states as defined by the sequence list ψ. This can be accomplished by translating

each of the above rules to a set of |ψ| rules, one for each state.

ρ̂S0
00
← ρ̂S0

10
, . . . , ρ̂S0

1n1
, not ρ̂S0

20
, . . . , not ρ̂S0

2n2

...

ρ̂
S|ψ|
00
← ρ̂

S|ψ|
10

, . . . , ρ̂
S|ψ|
1n1

, not ρ̂
S|ψ|
20

, . . . , not ρ̂
S|ψ|
2n2

26

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

...

ρ̂S0
0n0
← ρ̂S0

10
, . . . , ρ̂S0

1n1
, not ρ̂S0

20
, . . . , not ρ̂S0

2n2

...

ρ̂
S|ψ|
0n0
← ρ̂

S|ψ|
10

, . . . , ρ̂
S|ψ|
1n1

, not ρ̂
S|ψ|
20

, . . . , not ρ̂
S|ψ|
2n2

where

ρ̂σ0i = TransFact(ρ0i , σ), 0 ≤ i ≤ n0,

ρ̂σ1j = TransFact(ρ1j , σ), 0 ≤ j ≤ n1,

ρ̂σ2k = TransFact(ρ2k , σ), 0 ≤ k ≤ n2,

S0 ≤ σ ≤ S|ψ|

For a given language L constraint rule, the number of constraint rules generated in the

translation is:

n0 |ψ|

where

n0 is the number of facts in the always clause

|ψ| is the number of states

The example below shows how the following language L code fragment is translated to

language L∗:

always

holds(alice, read, data),

holds(alice, write, data)

implied by

memb(alice, admin)

with absence

!holds(alice, own, data);

Given a policy update reference in the sequence list ψ (i.e. |ψ| = 1), the language L∗

equivalent is as follows:

ˆholds(alice, read, data, S0)←
ˆmemb(alice, admin, S0), not ¬ ˆholds(alice, own, data, S0)

ˆholds(alice, write, data, S0)←
ˆmemb(alice, admin, S0), not ¬ ˆholds(alice, own, data, S0)

27

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

ˆholds(alice, read, data, S1)←
ˆmemb(alice, admin, S1), not ¬ ˆholds(alice, own, data, S1)

ˆholds(alice, write, data, S1)←
ˆmemb(alice, admin, S1), not ¬ ˆholds(alice, own, data, S1)

Policy Update Rules

Given that n0, n1 ≥ 0, all occurrences of variable place-holders grounded to entity identi-

fiers, a policy update u in language L is in the form:

u causes ρ00, ..., ρ0n0

if ρ10, ..., ρ1n1
;

In language L∗, such policy updates may be represented as a set of implications, with

each fact ρ0 in the postcondition expression as the consequent and precondition expression

ρ1 as the premise. However, the translation process must also take into account that the

premise of the implication holds in the state before the policy update is applied and that the

consequent holds in the state after the application.

ρ̂00 ← ρ̂10 , . . . , ρ̂1n1

...

ρ̂0n0
← ρ̂10 , . . . , ρ̂1n1

where

ρ̂0i = TransFact(ρ0i , Res(u, σ)), 0 ≤ i ≤ n0,

ρ̂1j = TransFact(ρ1j , σ), 0 ≤ j ≤ n1

Intuitively, a given language L policy update definition will generate n0 policy update

rules in language L∗, where n0 is the number of facts in the postcondition expression. For

example, given the following 2 language L policy update definitions:

grant read()

causes holds(alice, read, file)

if memb(alice, readers);

grant write()

causes holds(alice, write, file)

if memb(alice, writers);

28

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

Given the update sequence list ψ contains {grant read, grant write}, the above state-

ments are written in language L∗ as:

ˆholds(alice, read, file, S1)← ˆmemb(alice, readers, S0)

ˆholds(alice, write, file, S2)← ˆmemb(alice, writers, S1)

Additional Constraints

In addition to the translations discussed above, there are a few other implicit constraint rules

implied by language L that need to be explicitly defined in language L∗.

1. Inheritance Rules. All properties held by a group is inherited by all the members and

subsets of that group. This rule is easy to apply for subject group entities. However,

careful attention must be given to access right and object groups. A subject holding

an access right for an object group implies that the subject also holds that access right

for all objects in the object group. Similarly, a subject holding an access right group

for a particular object implies that the subject holds all access rights contained in the

access right group for that object.

A conflict is encountered when a particular property is to be inherited by an entity

from a group of which it is a member or subset, and the contained entity already

holds the negation of that property. This conflict is resolved by giving negative facts

higher precedence over its positive counterpart: by allowing member or subset entities

to inherit its parent group’s properties only if the entities do not already hold the

negation of those properties.

The following are the inheritance constraint rules to allow the properties held by a

group to propagate to its members and subsets that do not already hold the negation

of the properties.

(a) Subject Group Membership Inheritance Rules

∀ (ss, sg, a, o, σ),

ˆholds(ss, a, o, σ)←
ˆholds(sg, a, o, σ), ˆmemb(ss, sg, σ), not ¬ ˆholds(ss, a, o, σ)

¬ ˆholds(ss, a, o, σ)←
¬ ˆholds(sg, a, o, σ), ˆmemb(ss, sg, σ)

where

ss ∈ Ess,

29

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

sg ∈ Esg,

a ∈ Ea,

o ∈ Eo,
S0 ≤ σ ≤ S|ψ|

(b) Access Right Group Membership Inheritance Rules

∀ (s, as, ag, o, σ),

ˆholds(s, as, o, σ)←
ˆholds(s, ag, o, σ), ˆmemb(as, ag, σ), not ¬ ˆholds(s, as, o, σ)

¬ ˆholds(s, as, o, σ)←
¬ ˆholds(s, ag, o, σ), ˆmemb(as, ag, σ)

where

s ∈ Es,
as ∈ Eas,
ag ∈ Eag,

o ∈ Eo,
S0 ≤ σ ≤ S|ψ|

(c) Object Group Membership Inheritance Rules

∀ (s, a, os, og, σ),

ˆholds(s, a, os, σ)←
ˆholds(s, a, og, σ), ˆmemb(os, og, σ), not ¬ ˆholds(s, a, os, σ)

¬ ˆholds(s, a, os, σ)←
¬ ˆholds(s, a, og, σ), ˆmemb(os, og, σ)

where

s ∈ Es,
a ∈ Ea,

os ∈ Eos,
og ∈ Eog,

S0 ≤ σ ≤ S|ψ|
(d) Subject Group Subset Inheritance Rules

∀ (sg0, sg1, a, o, σ),

ˆholds(sg0, a, o, σ)←
ˆholds(sg1, a, o, σ), ˆsubst(sg0, sg1, σ), not ¬ ˆholds(sg0, a, o, σ)

¬ ˆholds(sg0, a, o, σ)←
¬ ˆholds(sg1, a, o, σ), ˆsubst(sg0, sg1, σ)

30

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

where

sg0, sg1 ∈ Esg,

a ∈ Ea,

o ∈ Eo,
sg0 6= sg1,

S0 ≤ σ ≤ S|ψ|

(e) Access Right Group Subset Inheritance Rules

∀ (s, ag0, ag1, o, σ),

ˆholds(s, ag0, o, σ)←
ˆholds(s, ag1, o, σ), ˆsubst(ag0, ag1, σ), not ¬ ˆholds(s, ag0, o, σ)

¬ ˆholds(s, ag0, o, σ)←
¬ ˆholds(s, ag1, o, σ), ˆsubst(ag0, ag1, σ)

where

s ∈ Es,
ag0, ag1 ∈ Eag,

o ∈ Eo,
ag0 6= ag1,

S0 ≤ σ ≤ S|ψ|

(f) Object Group Subset Inheritance Rules

∀ (s, a, og0, og1, σ),

ˆholds(s, a, og0, σ)←
ˆholds(s, a, og1, σ), ˆsubst(og0, og1, σ), not ¬ ˆholds(s, a, og0, σ)

¬ ˆholds(s, a, og0, σ)←
¬ ˆholds(s, a, og1, σ), ˆsubst(og0, og1, σ)

where

s ∈ Es,
a ∈ Ea,

og0, og1 ∈ Eog,

og0 6= og1,

S0 ≤ σ ≤ S|ψ|

2. Transitivity Rules. Given three distinct groups g0, g1 and g2. If g0 is a subset of g1
and g1 is a subset of g2, then g0 must also be a subset of g2. The following rules

ensure that the transitive property of subject, access right and object groups holds:

31

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

(a) Subject Group Transitivity Rules

∀ (sg0, sg1, sg2, σ),

ˆsubst(sg0, sg2, σ)← ˆsubst(sg0, sg1, σ), ˆsubst(sg1, sg2, σ)

where

sg0, sg1, sg2 ∈ Esg,

sg0 6= sg1 6= sg2,

S0 ≤ σ ≤ S|ψ|
(b) Access Right Group Transitivity Rules

∀ (ag0, ag1, ag2, σ),

ˆsubst(ag0, ag2, σ)← ˆsubst(ag0, ag1, σ), ˆsubst(ag1, ag2, σ)

where

ag0, ag1, ag2 ∈ Eag,

ag0 6= ag1 6= ag2,

S0 ≤ σ ≤ S|ψ|
(c) Object Group Transitivity Rules

∀ (og0, og1, og2, σ),

ˆsubst(og0, og2, σ)← ˆsubst(og0, og1, σ), ˆsubst(og1, og2, σ)

where

og0, og1, og2 ∈ Eog,

og0 6= og1 6= og2,

S0 ≤ σ ≤ S|ψ|

3. Inertial Rules. Intuitively, all facts in the current state that are not affected by a policy

update should be carried over to the next state after the update. In language L∗,

this rule must be explicitly defined as a constraint. Formally, the inertial rules are

expressed as follows:

∀ (α̂,u) ∃α̂′,

α̂′← α̂, not ¬ α̂′

¬ α̂′←¬ α̂, not α̂′

where

α̂ ∈ Aσ,

u ∈ ψ,

α̂′ = CopyAtom(α̂, Res(u, σ))

32

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

4. Reflexivity Rules. Finally, explicit rules must be given to show that every set is a

subset of itself.

∀ (g, σ),

ˆsubst(g, g, σ)

where

g ∈ (Esg ∪ Eag ∪ Eog),

S0 ≤ σ ≤ S|ψ|

Example 2.2 The following shows the language L∗ translation of the language L program

listing shown in Example 2.1.

1. Initial Fact Rules

ˆmemb(alice, grp2, S0)←
ˆholds(grp1, read, file, S0)←
ˆsubst(grp2, grp1, S0)←

2. Constraint Rules

ˆholds(grp1, write, file, S0)←
ˆholds(grp1, read, file, S0), not ¬ ˆholds(grp3, write, file, S0)

ˆholds(grp1, write, file, S1)←
ˆholds(grp1, read, file, S1), not ¬ ˆholds(grp3, write, file, S1)

3. Policy Update Rules

¬ ˆholds(grp1, read, file, S1)←

4. Inheritance Rules

ˆholds(alice, read, file, S0)←
ˆholds(grp1, read, file, S0), ˆmemb(alice, grp1, S0),

not ¬ ˆholds(alice, read, file, S0)

¬ ˆholds(alice, read, file, S0)←
¬ ˆholds(grp1, read, file, S0), ˆmemb(alice, grp1, S0)

33

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

...

ˆholds(alice, write, file, S1)←
ˆholds(grp3, write, file, S1), ˆmemb(alice, grp3, S1),

not ¬ ˆholds(alice, write, file, S1)

¬ ˆholds(alice, write, file, S1)←
¬ ˆholds(grp3, write, file, S1), ˆmemb(alice, grp3, S1)

ˆholds(grp1, read, file, S0)←
ˆholds(grp2, read, file, S0), ˆsubst(grp1, grp2, S0)

not ¬ ˆholds(grp1, read, file, S0),

¬ ˆholds(grp1, read, file, S0)←
¬ ˆholds(grp2, read, file, S0), ˆsubst(grp1, grp2, S0)

...

ˆholds(grp3, write, file, S1)←
ˆholds(grp2, write, file, S1), ˆsubst(grp3, grp2, S1)

not ¬ ˆholds(grp3, write, file, S1),

¬ ˆholds(grp3, write, file, S1)←
¬ ˆholds(grp2, write, file, S1), ˆsubst(grp3, grp2, S1)

5. Transitivity Rules

ˆsubst(grp1, grp3, S0)← ˆsubst(grp1, grp2, S0), ˆsubst(grp2, grp3, S0)

...

ˆsubst(grp3, grp1, S0)← ˆsubst(grp3, grp2, S0), ˆsubst(grp2, grp1, S0)

ˆsubst(grp1, grp3, S1)← ˆsubst(grp1, grp2, S1), ˆsubst(grp2, grp3, S1)

...

ˆsubst(grp3, grp1, S1)← ˆsubst(grp3, grp2, S1), ˆsubst(grp2, grp1, S1)

6. Inertial Rules

34

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

ˆholds(alice, read, file, S1)←
ˆholds(alice, read, file, S0), not ¬ ˆholds(alice, read, file, S1)

¬ ˆholds(alice, read, file, S1)←
¬ ˆholds(alice, read, file, S0), not ¬ ˆholds(alice, read, file, S1)

ˆholds(alice, write, file, S1)←
ˆholds(alice, write, file, S0), not ¬ ˆholds(alice, write, file, S1)

¬ ˆholds(alice, write, file, S1)←
¬ ˆholds(alice, write, file, S0), not ¬ ˆholds(alice, write, file, S1)

ˆholds(grp1, read, file, S1)←
ˆholds(grp1, read, file, S0), not ¬ ˆholds(grp1, read, file, S1)

¬ ˆholds(grp1, read, file, S1)←
¬ ˆholds(grp1, read, file, S0), not ¬ ˆholds(grp1, read, file, S1)

...

ˆholds(grp3, read, file, S1)←
ˆholds(grp3, read, file, S0), not ¬ ˆholds(grp3, read, file, S1)

¬ ˆholds(grp3, read, file, S1)←
¬ ˆholds(grp3, read, file, S0), not ¬ ˆholds(grp3, read, file, S1)

ˆholds(grp1, write, file, S1)←
ˆholds(grp1, write, file, S0), not ¬ ˆholds(grp1, write, file, S1)

¬ ˆholds(grp1, write, file, S1)←
¬ ˆholds(grp1, write, file, S0), not ¬ ˆholds(grp1, write, file, S1)

...

ˆholds(grp3, write, file, S1)←
ˆholds(grp3, write, file, S0), not ¬ ˆholds(grp3, write, file, S1)

¬ ˆholds(grp3, write, file, S1)←
¬ ˆholds(grp3, write, file, S0), not ¬ ˆholds(grp3, write, file, S1)

35

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

ˆmemb(alice, grp1, S1)←
ˆmemb(alice, grp1, S0), not ¬ ˆmemb(alice, grp1, S1)

¬ ˆmemb(alice, grp1, S1)←
¬ ˆmemb(alice, grp1, S0), not ˆmemb(alice, grp1, S1)

...

ˆmemb(alice, grp3, S1)←
ˆmemb(alice, grp3, S0), not ¬ ˆmemb(alice, grp3, S1)

¬ ˆmemb(alice, grp3, S1)←
¬ ˆmemb(alice, grp3, S0), not ˆmemb(alice, grp3, S1)

ˆsubst(grp1, grp1, S1)←
ˆsubst(grp1, grp1, S0), not ¬ ˆsubst(grp1, grp1, S1)

¬ ˆsubst(grp1, grp1, S1)←
¬ ˆmemb(grp1, grp1, S0), not ˆmemb(grp1, grp1, S1)

...

ˆsubst(grp3, grp3, S1)←
ˆsubst(grp3, grp3, S0), not ¬ ˆsubst(grp3, grp3, S1)

¬ ˆsubst(grp3, grp3, S1)←
¬ ˆmemb(grp3, grp3, S0), not ˆmemb(grp3, grp3, S1)

7. Reflexivity Rules

ˆsubset(grp1, grp1, S0)←
ˆsubset(grp2, grp2, S0)←
ˆsubset(grp3, grp3, S0)←
ˆsubset(grp1, grp1, S1)←
ˆsubset(grp2, grp2, S1)←
ˆsubset(grp3, grp3, S1)←

36

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

Definition 2.3 Given a domain description DL of language L, the language L∗ translation

Trans(DL) is an extended logic program of language L consisting of: (1) initial fact rules,

(2) constraint rules, (3) policy update rules, (4) inheritance rules, (5) transitivity rules, (6)

inertial rules, and (7) reflexivity rules as described above.

Note that given a domain descriptionDL, the translation Trans(DL) may contain more

rules than the original statements in DL. However, as the theorem below defines the max-

imum number of rules generated in a translation Trans(DL), it shows that the size of a

translated domain |Trans(DL)| can only be polynomially larger than the size of the given

domain |DL|. Therefore, from a computational viewpoint, computing the answer sets of

Trans(DL) is always feasible.

Theorem 2.1 (Translation Size) Given a domain description DL; the sets Γint, Γcon and

Γupd containing the initially, constraint and policy update statements in DL, respectively;

the set E containing all the entities in DL, including its subsets Es, Ea, Es, Ess, Eas, Eos,
Esg, Eag, Eog; the set A containing all the atoms in DL; the maximum number of facts

Max(Γint) in the expression of any initially statement in Γint; the maximum number of

facts Max(Γcon) in the always clause expression of any constraint statement in Γcon; the

maximum number of facts Max(Γupd) in the postcondition expression of any policy up-

date statement in Γupd; and finally the policy update sequence list ψ, then the size of the

translation Trans(DL) is:

|Trans(DL)| ≤

Max(Γint) |Γint| +

|ψ|Max(Γcon) |Γcon| +

|ψ|Max(Γupd) +

2 |ψ| |Ess| |Esg| |Ea| |Eo| +

2 |ψ| |Es| |Eas| |Eag| |Eo| +

2 |ψ| |Es| |Ea| |Eos| |Eog| +

2 |ψ| |Esg|2 |Ea| |Eo| +

2 |ψ| |Es| |Eag|2 |Eo| +

2 |ψ| |Es| |Ea| |Eog|2 +

|ψ| (|Esg|3 + |Eag|3 + |Eog|3) +

2 |ψ| |A| +

|ψ| (|Esg| + |Eag| + |Eog|)

37

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

Proof From Definition 2.3, it follows that the size of a language L∗ translation is as

follows:

|Trans(DL)| = |Fint| + |Fcon| + |Fupd| + |Finh| + |Ftra| + |Fine| + |Fref |

where Fint, Fcon, Fupd, Finh, Ftra, Fine, and Fref are the sets of initial fact rules, con-

straint rules, policy update rules, inheritance rules, transitivity rules, inertial rules, and re-

flexivity rules, respectively.

As no initially statement in the set Γint contain an expression with more thanMax(Γint)
facts, the maximum number of initial fact rules generated in the translation is:

|Fint| ≤Max(Γint) |Γint|

Each language L constraint statement in Γcon corresponds to n rules in language L∗,

where n is the number of policy update states times the number of facts in the always clause

of the statement. With Max(Γcon) as the maximum number of facts in the always clause of

any constraint statement, we have:

|Fcon| ≤ |ψ|Max(Γcon) |Γcon|

For policy update statements, only those that are applied are actually translated to lan-

guage L∗. With Max(Γupd) as the maximum number of facts in the postcondition expres-

sion of any applied policy update statement, we have:

|Fupd| ≤ |ψ|Max(Γupd)

The total number of inheritance rules generated in the translation is the sum of the

number of member inheritance rules and the number of subset inheritance rules:

|Finh| = |Finhmem | + |Finhsub |

Since the membership inheritance rules show the relationships between every possible

combination of single and group entities times the number of states times 2 (for negative

facts), we have:

|Finhmem | =

2 |ψ| |Ess| |Esg| |Ea| |Eo| +

2 |ψ| |Es| |Eas| |Eag| |Eo| +

2 |ψ| |Es| |Ea| |Eos| |Eog|

38

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

For subset inheritance rules, only the relationships between group entities are consid-

ered:

|Finhsub | =

2 |ψ| |Esg|2 |Ea| |Eo| +

2 |ψ| |Es| |Eag|2 |Eo| +

2 |ψ| |Es| |Ea| |Eog|2

As transitivity rules enumerate every possible combinations of any three group entities,

for each entity type, the total number of transitivity rules is shown below:

|Ftra| = |ψ| (|Esg|3 + |Eag|3 + |Eog|3)

A single atom in language L corresponds to n inertial rules in language L∗, where n is

the number of states times 2 (for negative facts). This means the total number of inertial

rules generated is:

|Fine| = 2 |ψ| |A|

Lastly, the total number of reflexivity rules is equal to the total number of group entities

times the number of states:

|Fref | = |ψ| (|Esg| + |Eag| + |Eog|)

2.3 Domain Consistency and Query Evaluation

A domain description of language L must be consistent in order to generate a consistent

answer set for the evaluation of queries. This section considers two issues: the problem

of identifying whether a given domain description is consistent2, and how query evaluation

is performed given a consistent language domain description. By using Definition 2.3, we

define consistency as follows:

Definition 2.4 The domain description DL of language L is said to be consistent if and

only if the translation Trans(DL) has a consistent answer set.

2The strategy used here for determining domain consistency is based on a similar strategy used by Zhang
[66] for characterising consistent action domains.

39

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

First, we introduce a few notational constructs. Given a domain description DL com-

posed of the following language L statements:

initially ρ00, . . ., ρ0n0
, !ρ10, . . ., !ρ1n1

;

always ρ20, . . ., ρ2n2
, !ρ30, . . ., !ρ3n3

implied by ρ40, . . ., ρ4n4
, !ρ50, . . ., !ρ5n5

with absence ρ60, . . ., ρ6n6
, !ρ70, . . ., !ρ7n7

;

update u()

causes ρ80, . . ., ρ8n8
, !ρ90, . . ., !ρ9n9

if ρ100, . . ., ρ10n10
, !ρ110, . . ., !ρ11n11

;

Let γint be an initial fact definition statement, γcon a constraint definition statement, and

γupd a policy update definition statement, where γint, γcon, γupd ∈ DL. We then define the

following set constructor functions:

F+
int(γint) = {ρ0i | 0 ≤ i ≤ n0}

F−
int(γint) = {ρ1i | 0 ≤ i ≤ n1}

F+
con(γupd) = {ρ2i | 0 ≤ i ≤ n2}

F−
con(γupd) = {ρ3i | 0 ≤ i ≤ n3}

F+
upd(γcon) = {ρ4i | 0 ≤ i ≤ n4}

F−
upd(γcon) = {ρ5i | 0 ≤ i ≤ n5}

Using these functions, we define the following sets of ground facts:

F+
int = {ρ | ρ ∈ F+

int(γint), γint ∈ DL}

F−
int = {ρ | ρ ∈ F−

int(γint), γint ∈ DL}

F+
con = {ρ | ρ ∈ F+

con(γcon), γcon ∈ DL}

F−
con = {ρ | ρ ∈ F−

con(γcon), γcon ∈ DL}

F+
upd = {ρ | ρ ∈ F+

upd(γupd), γupd ∈ DL}

F−
upd = {ρ | ρ ∈ F−

upd(γupd), γupd ∈ DL}

Additionally, we use the complementary set notation F to denote a set containing the nega-

tion of facts in set F .

F = {¬ρ | ρ ∈ F}.

40

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

Let γ be an initially, constraint or policy update declaration statement of language L.

We then define the following functions:

Eff (γ) =

{ ρ00 , . . . , ρ0n0

, ¬ρ10 , . . . , ¬ρ1n1
}, if γ is initially

{ ρ20 , . . . , ρ2n2
, ¬ρ30 , . . . , ¬ρ3n3

}, if γ is constraint

{ ρ80 , . . . , ρ8n8
, ¬ρ90 , . . . , ¬ρ9n9

}, if γ is policy update

Def (γ) =

∅, if γ is initially

{ ρ60 , . . . , ρ6n6
, ¬ρ70 , . . . , ¬ρ7n7

}, if γ is constraint

∅, if γ is policy update

Pre(γ) =

∅, if γ is initially

{ ρ40 , . . . , ρ4n4
, ¬ρ50 , . . . , ¬ρ5n5

}, if γ is constraint

{ ρ100 , . . . , ρ100 , ¬ρ110 , . . . , ¬ρ11n11 }, if γ is policy update

Definition 2.5 Given a domain description DL of language L, two ground facts ρ and ρ′

are mutually exclusive in DL if:

ρ ∈ {F+
int ∪ F

−
int ∪ F+

con ∪ F−
con ∪ F+

upd ∪ F
−
upd}

implies

ρ′ 6∈ {F+
int ∪ F

−
int ∪ F+

con ∪ F−
con ∪ F+

upd ∪ F
−
upd}

Stated simply, a pair of mutually exclusive facts cannot both be true in any given state.

The following two definitions refer to language L statements.

Definition 2.6 Given a domain description DL of language L, two statements γ and γ′ are

complementary in DL if one of the following conditions holds:

1. γ and γ′ are both constraint statements and Eff(γ) = Eff(γ′).

2. γ is a constraint statement, γ′ is a policy update statement and Eff(γ) = Eff(γ′).

Definition 2.7 Given a domain description DL, DL is said to be normal if it satisfies all of

the following conditions:

1. F+
int ∩ F

−
int = ∅.

2. For any two constraint statements γ and γ′ in DL, including γ = γ′, Def(γ) ∩
Eff(γ′) = ∅.

41

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

3. For all constraint statements γ in DL, Eff(γ) ∩ Pre(γ) = ∅.

4. For any two complementary statements γ and γ′ in DL, there exists a pair of ground

expression ε ∈ Pre(γ) and ε′ ∈ Pre(γ′) such that ε and ε′ are mutually exclusive.

With the above definitions, we can now provide a sufficient condition to ensure the

consistency of a domain description.

Theorem 2.2 (Domain Consistency) A normal domain description of language L is also

consistent.

Proof From Definition 2.4, given a normal domain description DL, we only need to show

that Trans(DL) has at least one consistent answer set to prove that DL is also consistent.

Given a normal domain description DL, Condition 2 in Definition 2.7 ensures that the

translation Trans(DL) do not contain rules of the following form:

ρ̂0← . . ., not ρ̂k, . . .

ρ̂1← . . ., ρ̂0, . . .
...

ρ̂k−1← . . ., ρ̂k−2, . . .

ρ̂k ← . . ., ρ̂k−1, . . .

The absence of these rules means Trans(DL) is a program without negative cycles [41].

As no other rule in DL can cause Trans(DL) to have these rules, we conclude that a nor-

mal domain description DL, as defined by Definition 2.7, will generate an extended logic

program Trans(DL) without negative cycles. Also, from [8, 41], we further conclude that

the translated program Trans(DL) must have an answer set.

Condition 1 of Definition 2.7 prevents rules of the following form from occurring in

Trans(DL):

ρ̂S0 ←

¬ρ̂S0 ←

This shows that a subset of the answer set which contains facts from the initial state S0 is

consistent.

Condition 3 of Definition 2.7 guarantees that rules of the following form do not occur

in Trans(DL):

ρ̂← . . ., ¬ρ̂, . . .

42

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

This ensures that all constraint rules translated from DL are consistent.

Finally, Condition 4 of Definition 2.7 ensures that rules in Trans(DL) of the following

form:

ρ̂← . . ., ρ̂′, . . .

¬ρ̂← . . ., ρ̂′′, . . .

cannot both affect the answer set as the premises ρ′ and ρ′′ are mutually exclusive and

therefore only one is true in any given state.

These guarantee that the answer set do not contain complementary facts, and therefore

guarantee that the answer set is consistent.

Since only consistent domain descriptions can be evaluated in terms of user queries,

Theorem 2.2 may be used to check whether a domain description is consistent.

Definition 2.8 Given a consistent domain descriptionDL, a ground query expression φ and

a finite sequence list ψ, we say query φ holds in DL after the policy updates in sequence list

ψ have been applied, denoted as

DL |= {φ, ψ}

if and only if

∀ (ρ, λ), ρ̂ ∈ λ

where

ρ ∈ φ,

λ ∈ Λ,

ρ̂ = TransFact(ρ, S|ψ|),

Λ = answer sets of Trans(DL)

Definition 2.8 shows that given a finite list of policy updates ψ, a query expression φ

may be evaluated from a consistent language L domain DL. This is achieved by generating

a set of answer sets from the normal logic program translation Trans(DL). φ is then said

to hold inDL after the policy updates in ψ have been applied if and only if every answer set

generated contains every fact in the query expression φ.

Example 2.3 Given the language L code listing in Example 2.1 and its translation in Ex-

ample 2.2, where the update sequence list ψ = {delete read(grp1, file)}. The following

shows the evaluated results of each query φ:

43

CHAPTER 2. LOGIC-BASED AUTHORISATION LANGUAGE

φ0 = holds(grp1, write, file) : TRUE

φ1 = holds(grp1, read, file) : FALSE

φ2 = holds(alice, write, file) : TRUE

φ3 = holds(alice, read, file) : FALSE

2.4 Summary

In this chapter, we have provided a means of expressing access control policies in the form

of Language L, a first-order logic language. We have shown that the syntax of this language

not only provides sufficient constructs to express logical rules in policies, but also a means

of expressing conditional and dynamic update rules. More importantly, we have shown in

this chapter that the semantics of Language L makes it possible to evaluate queries against

a policy after an arbitrary sequence of policy updates.

The next chapter extends the ideas presented in this chapter by introducing a full access

control system whose policies are expressed in Language L.

44

Chapter 3

PolicyUpdater System

The PolicyUpdater system is a fully-implemented access control system that uses language

L policy descriptions. The first part of this chapter focuses on the underlying mechanisms

that make up the system, followed by an analysis of the performance of the implementation.

The final part of the chapter describes the application of a PolicyUpdater module to a web

server to enforce logic-based authorisation policies1.

The source code and other technical information of the core PolicyUpdater system and

the web server module can be found in the PolicyUpdater website at:

http://www.scm.uws.edu.au/˜jcrescin/projects/policyupdater/index.html

3.1 System Structure

As shown in Figure 3.1, the PolicyUpdater system works with an authorisation agent pro-

gram that queries the policy base to determine whether to allow users access to resources.

Through an authorisation agent program, the PolicyUpdater system also allows administra-

tors to dynamically update the policy base by adding or removing update directives in the

policy update table.

3.1.1 Parsers

As the policy itself is written in language L, the system uses two parsers to act as interfaces

to the authorisation agent and the language L policy.
1PolicyUpdater implementation and performance analysis were published in [20]. The web server module

was first introduced in [22].

45

CHAPTER 3. POLICYUPDATER SYSTEM

Administrator

Authorisation

Agent

User

Agent

Parser

Resource

Symbol

Table

Policy

Base

Update

Table

Policy

Parser

Policy

Policy

Update

Request

Resource

Query

Update /

PolicyUpdater

Figure 3.1: Structure of PolicyUpdater

Policy Parser

The policy parser is responsible for correctly reading the policy file into the core PolicyUp-

dater system. The parser ensures that the policy file strictly adheres to the language L
syntax then systematically stores entity identifiers into the symbol table while initial state

facts, constraint expressions and policy update definitions are stored into their respective

tables in the policy base.

Agent Parser

The agent parser is the direct link between the core PolicyUpdater system and the authori-

sation agent program. The parser’s sole purpose is to receive language L directives from an

agent, perform the directive upon the policy base and return a reply if the directive requires

one. Such directives may be to query the policy base or to manipulate the policy update

sequence table.

3.1.2 Data Structures

As a language L program is parsed, each statement containing entity declarations, initial

facts, constraint rules and policy updates must first be stored into a structure before the

translation process is started. This structure is composed of the symbol table, the policy

base and the policy update sequence table. The symbol table is used to store all entity

identifiers defined in the policy, while the rest of the policy definitions are stored in the

policy base. The sequence of policy update directives are stored separately in the policy

update sequence table.

Each of the tables and lists used in the system inherits from a generic ordered and

46

CHAPTER 3. POLICYUPDATER SYSTEM

indexed list implementation. Each node in this list holds a generic data type that can be used

to store strings, an arbitrary data type or another list type. This list structure implements the

following operations:

• LIST .Add(item) appends item to the end of LIST .

• LIST .Length() returns the number of elements in LIST .

• LIST .Find(item) returns true if item is in the list and false otherwise.

• LIST .Index(item) returns the index of the item item in LIST .

• LIST .Get(index) returns the index’th item in LIST .

For simplicity, the following notations are used in the rest of this paper:

|LIST | = LIST .Length()

LIST [i] = LIST .Get(i)

Symbol Table

The symbol table is used to store the entity identifiers defined by the entity identifier dec-

laration statements of language L programs. The symbol table is composed of 6 separate

string lists as shown in 3.1.

Field Type Description
ss String List Single Subject
sg String List Group Subject
as String List Single Access Right
ag String List Group Access Right
os String List Single Object
og String List Group Object

Table 3.1: Symbol Table Data Structure

In addition to the 6 lists in the symbol table, 3 additional lists are defined: s, a and o.

These lists are simple concatenations of the other lists in the table (i.e. s = ss + sg, etc.).

Each entity identifier are sorted in the symbol table lists according to their type, and ordered

according to the order in which they are declared in the program. Each list is indexed by

positive integers starting from zero.

47

CHAPTER 3. POLICYUPDATER SYSTEM

Policy Base

When a language L program is parsed, each of the facts, rules and policy updates must first

be stored into the policy base. The policy base is composed of 4 tables to store the following:

initial facts, constraint rules, policy update definitions and the policy update sequence.

Atoms. The three types of atoms, i.e. holds, membership and subset, are represented as

structures of 2 to 3 strings, with each string matching an entity identifier from the symbol

table. Table 3.2 shows the fields associated with each atom type.

Atom Field Type Description

holds
sub String Subject Entity
acc String Access Right Entity
obj String Object Entity

member
elt String Single Entity
grp String Group Entity
type {sub|acc|obj} Type Specifier

subset
grp0 String Subgroup Entity
grp1 String Supergroup Entity
type {sub|acc|obj} Type Specifier

Table 3.2: Atom Data Structure

Facts. Facts are stored in a three-element structure composed of the following: polymor-

phic type which can be any of the three atom structures above; a type indicator to specify

whether the fact is holds, member or subset type; and a truth flag to indicate whether the

atom is classically negated or not (true if the fact holds and false if the negation of the fact

holds). Table 3.3 shows the data structure for storing facts.

Field Type Description
atom Atom Type Polymorphic Structure
type {h|m|s} Holds, Member or Subset
truth Boolean Negation Indicator

Table 3.3: Fact Data Structure

Expressions. Since expressions are simply conjunctions of facts, they are represented as

a list of fact structures.

48

CHAPTER 3. POLICYUPDATER SYSTEM

Initial Facts Table. The initial facts table is represented as a single list of fact structures,

or an expression. Each fact in all initially statements are added into the initial facts table.

Constraints Table. The constraints table, as shown in Table 3.4, is represented as a list of

constraint structures, with each structure composed of three expression fields.

Field Type Description
exp Expression Type Consequent
pcn Expression Type Positive Premise
ncn Expression Type Negative Premise

Table 3.4: Constraints Table

Policy Update Definitions Table. Another list of structures is the policy update table.

Each element structure of this table, as shown in Table 3.5 is composed of 4 fields.

Field Type Description
name String Update Identifier
vlist Ordered String List Variables
pre Expression Type Precondition
pst Expression Type Postcondition

Table 3.5: Policy Update Definitions Table

Policy Update Sequence Table

The policy update sequence table is an ordered list of sequence structures, each with two

fields. Table 3.6 shows the structure of this table.

Field Type Description
name String Update Identifier
ilist Ordered String List Identifiers

Table 3.6: Policy Update Sequence Table

3.2 System Processes

The processes presented in this section shows how the language L policy stored in the data

structures is translated into a normal logic program and how it can be dynamically updated

49

CHAPTER 3. POLICYUPDATER SYSTEM

and manipulated to evaluate queries. The flowchart in Figure 3.2 gives an overview of the

system processes.

Symbol

Table

Policy

Base

Update

Table

Policy

Grounding

Variable

SModels

Translation

NLP

Agent

Entity Identifiers

Policy

Ground

Query Request

Policy Update

Query Reply

Figure 3.2: System Flowchart

3.2.1 Grounding Constraint Variables

As the constraints are in the process of being added into the constraints table, each variable

identifier that occurs in a constraint is grounded by replacing that constraint with a set of

constraints wherein each instance of the variable is replaced by all entity identifiers defined

in the symbol table. Note that only those entity identifiers that are valid for each fact in

the current constraint are used to replace the variable (e.g. only singular subject entity

identifiers are used to replace an element variable occurring in a subject member fact).

For example, given that the symbol table contains three singular subject entity identi-

fiers: alice, bob and charlie, and the following constraint:

always holds(SSUB, write, file)

implied by

holds(SSUB, read, file),

memb(SSUB, students)

with absence

!holds(SSUB, write, file);

Grounding the constraint statement above yields three new constraint rules, each replac-

ing occurrences of the variable SSUB with alice, bob and charlie, respectively.

50

CHAPTER 3. POLICYUPDATER SYSTEM

3.2.2 Policy Updates

In Section 2.2, it is shown that policy updates are performed by treating each update as a

constraint. This constraint is composed of a premise, which is the precondition in the current

state and a consequent, which is the postcondition of the resulting state after the application

of the policy update. The resulting state in this procedure represents the updated policy.

The most crucial step in performing a policy update is the translation of the policy

updates into normal logic program constraints. This step involves identifying which policy

updates are to be applied from the update sequence table and then composing the required

constraint from the update definition in the policy base. Once the policy update constraints

are composed, they are then treated as any other constraint rules and are translated with the

rest of the policy into a normal logic program.

3.2.3 Translation to Normal Logic Program

The semantics of language L shows that any consistent language L program can be trans-

lated into an equivalent extended logic program then translated again into an equivalent

normal logic program. However, the implementation of such translations can be greatly

simplified by translating language L programs directly into normal logic programs.

Removing Classical Negation

In order to remove classical negation from facts of language L, each classically negated fact

¬ρ is replaced by a new and unique positive fact ρ′ that represents the negation of fact ρ.

To preserve the consistency of the policy base for all facts ρ in the domain, the following

constraint rule must be added:

FALSE ← ρ, ρ′

The removal process involves adding a boolean parameter to each fact. This boolean

parameter is used to indicate whether the fact is classically negated or not. For example,

given the fact:

¬ holds(alice, exec, file)

To remove classical negation, it is replaced by:

holds(alice, exec, file, false)

To ensure consistency, that is, to ensure that the fact and its negation are never both true at

any one time, the following rule is added:

FALSE ← holds(alice, exec, file, true), holds(alice, exec, file, false)

51

CHAPTER 3. POLICYUPDATER SYSTEM

Representing Facts in Propositional Form

A fact expressed in normal logic program form is composed of the atom relation, the state

in which it holds and a boolean flag to indicate classical negation. For notational simplicity,

this tuple may be represented by a unique positive integer i, where 0 ≤ i < |F| (|F| is the

total number of facts in the domain). The process of translating facts of language L into

normal logic program form is summarised by the following function:

i = Encode(α, σ, τ)

As shown above, the Encode function takes a language L atom α, the state σ in which

α holds, and a boolean value τ to indicate whether or not α is classically negated. Encode

returns a unique index i for that fact. The steps below outlines how the Encode function

computes the index i.

• Enumerate all possible atoms. By using all the entities in the symbol table, all pos-

sible language L atoms may be enumerated by grouping together 2 to 3 entities to-

gether. All possible atoms of type holds are generated by enumerating all possible

combinations of subject, access right and object entities. The set ofmember atoms is

generated from all the different combinations of singular and group entities of types

subject, access right and object. Similarly, the set of subset atoms is derived from

different subject, access right and object group pair combinations.

• Arrange the atoms in a predefined order. This procedure relies on the assumption that

the list of all possible atoms derived from the step above is arranged in a predefined

order. In this step we ensure that the atoms are enumerated in the following order:

holds, subject member, access right member, object member, subject subset,

access right subset and object subset. In addition to the ordering of atom types,

atoms of each type are themselves sorted according to the order in which their entities

appear in the symbol table.

• Assign an ordinal index for each enumerated atom. Since the enumerated list of

atoms are ordered, consecutive positive integers may be assigned to each atom as an

ordinal index i, where 0 ≤ i < n (n is the total number of atoms enumerated).

• Extend indexing procedure to represent facts. At the implementation level, facts are

just atoms with truth values. As such, we can treat each atom as positive facts. Since

negative facts are just mirror images of their positive counterparts, their indices are

calculated by adding n to the indices of the corresponding positive facts. Thus, in-

dices i, where n ≤ i < 2n are negative facts while indices i, where 0 ≤ i < n are

52

CHAPTER 3. POLICYUPDATER SYSTEM

positive facts. Furthermore, this procedure is again extended to represent the states of

the facts. The process is similar: indices i, where 0 ≤ i < 2n represent facts of state

S0, indices i, where 2n ≤ i < 4n represent facts of state S1, and so on.

Generating the Normal Logic Program from the Policy Base

With the language L policy elements stored into the storage structures described in Section

3.1.2, a normal logic program can then be generated for evaluation. The following algorithm

generates a normal logic program, given the Symbol Table θ, Initial State Facts Table ωi,

Constraint Rules Table ωc, Policy Update Definition Table ωu, and Policy Update Sequence

Table ψ:

Algorithm 3.1 GenNLP()

FUNCTION GenNLP(θ, ωi, ωc, ωu, ψ)

TransInitStateRules(ωi)

TransConstRules(ωc, ψ)

TransUpdateRules(ωu, ψ)

GenInherRules(θ, ψ)

GenTransRules(θ, ψ)

GenInertRules(θ, ψ)

GenRefleRules(θ, ψ)

GenConsiRules(θ, ψ)

ENDFUNCTION

The first three Trans∗() functions in Algorithm 3.1 perform a direct translation of lan-

guage L statements to normal logic program. The remaining fiveGen∗() functions generate

additional constraint rules. In the following algorithms, we use the following rule construc-

tor functions to generate normal logic program rules:

• RuleBegin() marks the beginning of a new rule.

• RuleHead(α) generates the consequent of the rule. α is a numeric representation of

an atom (e.g. returned by the Encode() function).

• RuleBody(α, τ) generates the premise of the rule. α is an atom in numeric form

like that of RuleHead(). τ is either true or false, indicating whether the atom is

positive or negative (negation-as-failure).

• RuleEnd() marks the end of a rule.

53

CHAPTER 3. POLICYUPDATER SYSTEM

Algorithm 3.2 illustrates how initial state rules are generated from the storage structures.

The process itself is straightforward: each fact in the initial state facts table is translated by

the Encode() function and is made the head of a new rule whose body is the literal true

fact.

Algorithm 3.2 TransInitStateRules()

FUNCTION TransInitStateRules(ωi)

FOR i = 0 TO (|ωi| - 1) DO

RuleBegin()

RuleHead(Encode(ωi[i].atom, 0, ωi[i].truth))

RuleBody(true, true)

RuleEnd()

ENDDO

ENDFUNCTION

The constraint rules generating algorithm (Algorithm 3.3) works by creating a new rule

that is composed of facts from the constraints table translated by the Encode() function.

The outer loop ensures that a rule is generated for every policy update state.

Algorithm 3.3 TransConstRules()

FUNCTION TransConstRules(ωc, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|ωc| - 1) DO

FOR k = 0 TO (|ωc[j].exp| - 1) DO

RuleBegin()

RuleHead(Encode(ωc[j].exp[k].atom, i, ωc[j].exp[k].truth))

FOR k = 0 TO (|ωc[j].pcn| - 1) DO

α = Encode(ωc[j].pcn[k].atom, i, ωc[j].pcn[k].truth)

RuleBody(α, true)

ENDDO

FOR k = 0 TO (|ωc[j].ncn| - 1) DO

α = Encode(ωc[j].ncn[k].atom, i, ωc[j].ncn[k].truth)

RuleBody(α, false)

ENDDO

RuleEnd()

ENDDO

ENDDO

ENDDO

ENDFUNCTION

54

CHAPTER 3. POLICYUPDATER SYSTEM

Algorithm 3.4 generates the policy update rules from the given policy update definition

table. Note that only those policy updates that also appear in the policy update sequence list

are actually translated. The actual translation process is similar to that of constraint rules,

except each variable that may occur within the expressions is first grounded and the policy

update state of each fact in the rule head is one more than that of each fact in the rule body.

Algorithm 3.4 TransUpdateRules()

FUNCTION TransUpdateRules(ωu, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|ωu| - 1) DO

IF ψ[i].name == ωu[j].name THEN

upd = GndUpdate(ωu[j], ψ[i].ilist)

FOR k = 0 TO (|upd.pst| - 1) DO

RuleBegin()

RuleHead(Encode(upd.pst[k].atom, i + 1, upd.pst[k].truth))

FOR l = 0 TO (|upd.pre| - 1) DO

RuleBody(Encode(upd.pre[l].atom, i, upd.pre[l].truth), true)

ENDDO

RuleEnd()

ENDDO

ENDIF

ENDDO

ENDDO

ENDFUNCTION

The function GndUpdate(u, ilist) used in Algorithm 3.4 returns a structure composed

of two expressions pre and pst, which corresponds with the pre and pst fields of the given

policy update definition u. All variables occurring in the facts of these expressions are

replaced with the corresponding entities from the given entity identifier list ilist.

Algorithm 3.5 generates 6 types of inheritance rules: subset subject, subset access right,

subset object, membership subject, membership access right and membership object. Each

of these 6 algorithms work in a similar way: a rule is generated by composing every possible

combination of either subject, access right and object entities to form either a subset or

membership fact. As with the constraint rule generating algorithm, each new rule generated

is replicated for each policy update state.

Algorithm 3.5 GenInherRules()

FUNCTION GenInherRules(θ, ψ)

GenSubSubstInherRules(θ, ψ)

55

CHAPTER 3. POLICYUPDATER SYSTEM

GenAccSubstInherRules(θ, ψ)

GenObjSubstInherRules(θ, ψ)

GenSubMembInherRules(θ, ψ)

GenAccMembInherRules(θ, ψ)

GenObjMembInherRules(θ, ψ)

ENDFUNCTION

The function GenSubSubstInherRules() shown in Algorithm 3.6 generates the sub-

ject subset inheritance rules. Similar techniques are used for the generation of other subset

and membership inheritance rules and are therefore not shown.

Algorithm 3.6 GenSubSubstInherRules()

FUNCTION GenSubSubstInherRules(θ, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|θ.sg| - 1) DO

FOR k = 0 TO (|θ.sg| - 1) DO

IF θ.sg[j] != θ.sg[k] THEN

FOR l = 0 TO (|θ.a| - 1) DO

FOR m = 0 TO (|θ.o| - 1) DO

α0 = holds(θ.sg[j], θ.ag[l], θ.og[m])

α1 = holds(θ.sg[k], θ.ag[l], θ.og[m])

α2 = subst(θ.sg[j], θ.sg[k])

RuleBegin()

RuleHead(Encode(α0, i, true))

RuleBody(Encode(α1, i, true), true)

RuleBody(Encode(α2, i, true), true)

RuleBody(Encode(α0, i, false), false)

RuleEnd()

RuleBegin()

RuleHead(Encode(α0, i, false))

RuleBody(Encode(α1, i, false), true)

RuleBody(Encode(α2, i, true), true)

RuleEnd()

ENDDO

ENDDO

ENDIF

ENDDO

ENDDO

ENDDO

ENDFUNCTION

56

CHAPTER 3. POLICYUPDATER SYSTEM

Algorithm 3.7 generates all the transitivity rules. Each subject, access right and object

transitivity rule generation algorithm follows a similar procedure: every possible combina-

tion of subject, access right or object group entities are used to form subset facts, then each

of these facts are used to form a transitivity rule. As with inheritance rules, each transitivity

rule is replicated for each policy update state. As similar techniques are used to generate

the access right and object transitivity rules, only the function that generates the subject

transitivity rules is shown in Algorithm 3.8.

Algorithm 3.7 GenTransRules()

FUNCTION GenTransRules(θ, ψ)

GenSubTransRules(θ, ψ)

GenAccTransRules(θ, ψ)

GenObjTransRules(θ, ψ)

ENDFUNCTION

Algorithm 3.8 GenSubTransRules()

FUNCTION GenSubTransRules(θ, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|θ.sg| - 1) DO

FOR k = 0 TO (|θ.sg| - 1) DO

FOR l = 0 TO (|θ.sg| - 1) DO

IF j != k AND j != l AND k != l THEN

α0 = subst(θ.sg[j], θ.sg[l])

α1 = subst({θ.sg[j], θ.sg[k])

α2 = subst({θ.sg[k], θ.sg[l])

RuleBegin()

RuleHead(Encode(α0, i, true))

RuleBody(Encode(α1, i, true), true)

RuleBody(Encode(α2, i, true), true)

RuleEnd()

ENDIF

ENDDO

ENDDO

ENDDO

ENDDO

ENDFUNCTION

The inertial rules generation function shown in Algorithm 3.9 is composed of 3 func-

tions that generate inertial rules for each atom type: holds, membership and subset. Each

type of rule is generated by composing different combinations of entity identifiers together

57

CHAPTER 3. POLICYUPDATER SYSTEM

to form a fact. Each rule is then formed by stating that for each policy update state, a fact

holds in the current state if it also holds in the previous state and its negation does not hold

in the current state.

Algorithm 3.9 GenInertRules()

FUNCTION GenInertRules(θ, ψ)

GenHldsInertRules(θ, ψ)

GenMembInertRules(θ, ψ)

GenSubsInertRules(θ, ψ)

ENDFUNCTION

Algorithm 3.10 shows theGenHldsInertRules() function which generates the inertial

rules for holds atoms. A similar method is used by the functions that generate the inertial

rules for the other two atom types.

Algorithm 3.10 GenHldsInertRules()

FUNCTION GenHldsInertRules(θ, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|θ.s| - 1) DO

FOR k = 0 TO (|θ.a| - 1) DO

FOR l = 0 TO (|θ.o| - 1) DO

α = holds(θ.s[j], θ.a[k], θ.o[l])

RuleBegin()

RuleHead(Encode(α, i + 1, true))

RuleBody(Encode(α, i, true), true)

RuleBody(Encode(α, i + 1, false), false)

RuleEnd()

RuleBegin()

RuleHead(Encode(α, i + 1, false))

RuleBody(Encode(α, i, false), true)

RuleBody(Encode(α, i + 1, true), false)

RuleEnd()

ENDDO

ENDDO

ENDDO

ENDDO

ENDFUNCTION

The functionGenRefleRules() shown in Algorithm 3.11 generates the reflexivity rules

for each atom type: subject, access right and object. A simple procedure is followed by each

58

CHAPTER 3. POLICYUPDATER SYSTEM

of the 3 functions: for every subject, access right and object group entities, a subset rule is

formed to show that a group is a subset of itself. As with the other rules, each rule generated

by these functions is replicated for each policy update state. Algorithm 3.12 shows how the

GenSubRefleRules() function generates the reflexivity rules for subject groups.

Algorithm 3.11 GenRefleRules()

FUNCTION GenRefleRules(θ, ψ)

GenSubRefleRules(θ, ψ)

GenAccRefleRules(θ, ψ)

GenObjRefleRules(θ, ψ)

ENDFUNCTION

Algorithm 3.12 GenSubRefleRules()

FUNCTION GenSubRefleRules(θ, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|θ.sg| - 1) DO

RuleBegin()

RuleHead(Encode(subst(θ.sg[j], θ.sg[j]), i, true))

RuleBody(true, true)

RuleEnd()

ENDDO

ENDDO

ENDFUNCTION

The last two functions shown in Algorithm 3.13 and Algorithm 3.14 shows the algo-

rithm to generate consistency rules for each atom type: holds, membership and subset. As

these rules use a similar process to generate rules, only the holds consistency rule genera-

tion algorithm is shown. The rules that are generated ensure that only a fact or its negation,

but never both, holds in the same policy update state.

Algorithm 3.13 GenConsiRules()

FUNCTION GenConsiRules(θ, ψ)

GenHldsConsiRules(θ, ψ)

GenMembConsiRules(θ, ψ)

GenSubsConsiRules(θ, ψ)

ENDFUNCTION

Algorithm 3.14 GenHldsConsiRules()

59

CHAPTER 3. POLICYUPDATER SYSTEM

FUNCTION GenHldsConsiRules(θ, ψ)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|θ.s| - 1) DO

FOR k = 0 TO (|θ.a| - 1) DO

FOR l = 0 TO (|θ.o| - 1) DO

α = holds(θ.s[j], θ.a[k], θ.o[l])

RuleBegin()

RuleHead(false)

RuleBody(Encode(α, i, true), true)

RuleBody(Encode(α, i, false), true)

RuleEnd()

ENDDO

ENDDO

ENDDO

ENDDO

ENDFUNCTION

3.2.4 Query Evaluation

Once a normal logic program has been generated from the authorisation policy stored in the

storage structure, a set of answer sets may then be generated through the use of the stable

model semantics [58, 47] with the SModels program2. Query evaluation then becomes

possible by checking whether each fact of a given query expression holds in each generated

answer set of the normal logic program.

Query evaluation works as follows. Given a set of answer sets Λ, an expression exp, the

process of query evaluation returns either either true, false or unknown depending on the

following conditions:

1. If each fact in the query expression exp is also in every answer set Λ, then exp is

evaluated as true.

2. If the negation of each fact in exp is also in every answer set Λ, then exp is evaluated

as false.

3. If none of the first two conditions are met, then exp is evaluated as unknown.

3.3 Experimental Results

In this section, we investigate the effects of domain size over computation time. The fol-

lowing tests3were conducted with PolicyUpdater version 1.0.5 using SModels version 2.31.
2SModels Package from http://www.tcs.hut.fi/Software/smodels

60

CHAPTER 3. POLICYUPDATER SYSTEM

The test machine used is an AMD Athlon XP 1800+ PC with 1GB of RAM, running the

Debian GNU/Linux 3.1 operating system with a plain Linux 2.6.16.20 kernel.

Table 3.7 shows the domain size for each test case. SEs and SEg are the numbers of

singular and group entities, respectively; SI is the number of initial state facts; SC is the

number of constraint rules; SU is the number of policy update definitions; SS is the number

of policy updates in the sequence list; and SQ is the number of facts to be queried.

SEs SEg SI SC SU SS SQ
1 4 3 3 1 1 1 4
2 24 23 3 1 1 1 4
3 104 3 3 1 1 1 4
4 4 103 3 1 1 1 4
5 24 23 103 1 1 1 4
6 24 23 3 101 1 1 4
7 24 23 3 1 101 1 4
8 24 23 3 1 101 101 4
9 24 23 3 1 1 1 104

10 24 23 103 1 101 101 4
11 24 23 3 101 101 101 4
12 24 23 103 101 101 101 104
13 104 103 103 101 101 101 104

Table 3.7: Thirteen Test Cases with Different Domain Sizes

The language L code listing in Example 2.1 is used in the first test case. In the second

test case, the same code is used with 20 new singular entities and 20 new group entities.

Test cases 3 and 4 are similar to test case 1, except 100 new singular and group entities were

added, respectively. Test cases 5 and 6 are similar to test case 2, except 100 new initial state

facts and constraint rules were added, respectively. In test case 7, 100 new policy update

definitions were added, and in test case 8, these policy update definitions were applied. Test

case 9 is similar to test case 2, but this one tries to evaluate 100 additional query facts. Test

case 11 is a combination of test cases 6 and 8. Test case 12 is a combination of test cases

5, 9 and 11. Finally, test case 13 is a combination of test cases 3 to 9, where the number of

each domain component is over 100.

Table 3.8 shows the execution times of each test case. TC is the total time (in seconds)

spent by the system to translate the language L statements to a normal logic program and to

generate the answer sets. TQ is the total time (in seconds) used by the system to evaluate all

the queries. To increase the accuracy of the results, each test was conducted 10 times. The
3The test results originally published in [20] was based on PolicyUpdater version 1.0.4 running on an older

platform.

61

CHAPTER 3. POLICYUPDATER SYSTEM

figures shown in Table 3.8 are the average times calculated from the 10 test runs.

TC TQ
1 0.000740 0.000616
2 0.249833 0.876428
3 0.071684 0.242012
4 13.344287 45.336900
5 0.251890 0.885376
6 0.253140 0.886952
7 0.250043 0.876544
8 14.302787 46.918752
9 0.249708 23.880376

10 14.374122 47.336968
11 14.499327 47.355992
12 14.509944 583.968320
13 - -

Table 3.8: Average Computation Times in Seconds

As shown in Table 3.8, the first two execution times are minimal when the domain size

is small. Test 3 shows that having a large number of singular entities have a measurable,

but insignificant effect on computation time. However, test 4 shows that an increase in

the number of group entities have a great impact on computation speed. This is to be

expected, as Section 2.2.3 shows that the number of group entities directly affect the number

of transitivity, inheritance and identity rules generated in the translation.

Comparing test 2 with tests 5 and 6, where the number of initial state facts and constraint

rules are increased by 100, respectively, we observe that that there is a slight increase in the

times required to perform the computation and query evaluation. One would expect that an

increase in the number of constraint rules will have more impact in execution times than an

increase in initial state facts. However, in test 6, the computation times were low because

only one policy update was actually applied.

Test 7 shows that increasing the number of policy update definitions has little impact

on the computation times. However, as test 8 shows, if these policy updates are actually

applied to the policy base, computation time increases dramatically.

Test case 9 shows that evaluating 100 additional queries has little effect on translation

and computation time, but obviously affects evaluation time.

Test case 10 shows the combined effects of an increased number of policy updates and

initial state facts. As expected, the times are only slightly larger than the times in test case

8, where only the number of policy updates were increased. This is due to the fact that

initial state facts are translated directly into normal logic program rules. On the other hand,

62

CHAPTER 3. POLICYUPDATER SYSTEM

test case 11 shows a significant increase in both computation and evaluation times. This is

expected, as the translation of a single constraint rule results in a constraint rule in every

policy update state.

Test case 12 shows that although large numbers of initial state facts and query requests

by themselves have little effect on performance, if combined together with the effects of a

large number of policy updates, computation time is significantly increased, particularly the

query evaluation time. Note that the value of TQ for this test is the average total time for

104 query evaluations. Using this value, each query evaluation takes an average of 5.615080

seconds to complete.

Unfortunately, the test system used in this experiment ran out of memory while per-

forming test case 13. Again, this is expected, as the combined effects of having a large

number of entities, constraint rules, policy updates and queries will result in approximately

5.7 billion rules, using the formula given in Theorem 2.1.

3.4 Case Study: Web Server Application

The expressiveness of language L and the effectiveness of the PolicyUpdater system can

be demonstrated by a web server authorisation application. In this application, the core

PolicyUpdater system serves as an authorisation module for the Apache4web server.

The Apache web server provides a generic access control system as provided by its

mod auth and mod access modules [3, 38]. With this built-in access control system, Apache

provides the standard HTTP Basic and Digest authentication schemes [46], as well as an

authorisation system to enforce access control policies. Although the PolicyUpdater module

do not provide the full functionality of Apache’s built-in authorisation module mod auth, it

does provide a flexible logic-based authorisation mechanism.

As shown in Figure 3.3, Apache’s Access Control module, together with its policy base,

is replaced by the PolicyUpdater module and its own policy base. The sole purpose of the

PolicyUpdater module is to act as an interface between the web server and the core Poli-

cyUpdater system. The system works as follows: as the server is started, the PolicyUpdater

module initialises the core PolicyUpdater system by sending the policy base. When a client

makes an arbitrary HTTP request for a resource from the server (1), the client (user) is au-

thenticated against the password table by the built-in authentication module; once the client

is properly authenticated (2) the request is transferred to the PolicyUpdater module, which

in turn generates a language L query (3) from the request details, then sends the query to

the core PolicyUpdater system for evaluation; if the query is successful and access control
4Apache Web Server from http://www.apache.org

63

CHAPTER 3. POLICYUPDATER SYSTEM

is granted, the original request is sent to the other request handlers of the web server (4)

where the request is eventually honoured; then finally (5), the resource (or acknowledge-

ment for HTTP requests other than GET) is sent back to the client. Optionally, client can

be an administrator who, after being authenticated, is presented with a special administrator

interface by the module to allow the policy base to be updated.

Root
Document

Pwd
Table

Policy PolicyUpdater
Module Module

Authentication Client

Handler
Request

Module

PolicyUpdater

Apache Web Server

5

12

3

4

Figure 3.3: PolicyUpdater Module for the Apache Web Server

3.4.1 Policy Description in Language L′

The policy description in the policy base is written in language L′, which is syntactically

and semantically similar to language L except for the lack of entity identifier definitions.

Entity identifiers need not be explicitly defined in the policy definition:

• Subjects of the authorisation policies are the users. Since all users must first be au-

thenticated, the password table used in authentication may also be used to extract the

list of subjects.

• Access Rights are the HTTP request methods defined by the HTTP 1.1 standard [45]:

OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE and CONNECT.

• Objects are the resources available in the server themselves. Assuming that the docu-

ment root is a hierarchy of directories and files, each of these are mapped as a unique

object of language L′.

Like language L, language L′ allows the definition of initial state facts, constraint rules

and policy update definitions.

64

CHAPTER 3. POLICYUPDATER SYSTEM

3.4.2 Mapping the Policy to Language L

As mentioned above, one task of the PolicyUpdater module is to generate a language L
policy from the given language L′ to be evaluated by the core PolicyUpdater system. This

process is outlined below:

• Generating entity identifier definitions. Subject entities are taken from the authenti-

cation (password) table; access rights are hard-coded built-ins; and the list of objects

are generated by traversing the document root for files and directories.

• Generating additional constraints. Additional constraint rules are generated to pre-

serve the relationship between groups and elements. This is useful to model the asser-

tion that unless explicitly stated, users holding particular access rights to a directory

automatically hold those access rights to every file in that directory (recursively, if

with subdirectories). The module makes this assertion by generating non-conditional

constraint rules that state that each file (object) is a member of the directory (object

group) in which it is contained.

All other language L′ statements (initial state declarations, constraint declarations and

policy update declarations) are already in language L form.

3.4.3 Evaluation of HTTP Requests

A HTTP request may be represented as a simplified tuple:

<usr, req meth, req res>

usr is the authenticated username that made the request (subject); req meth is a stan-

dard HTTP request method (access right); and req res is the resource associated with the

request (object). Intuitively, such a tuple may be expressed as a language L atom:

holds(usr, req meth, req res)

With each request expressed as language L atoms, a language L query statement can be

composed to check if the request is to be honoured:

query holds(usr, req meth, req res);

Once the query statement is composed, it is then sent by the PolicyUpdater module to

the core PolicyUpdater system for evaluation against the policy base.

65

CHAPTER 3. POLICYUPDATER SYSTEM

3.4.4 Policy Updates by Administrators

After being properly authenticated, an administrator can perform policy updates through the

use of a special interface generated by the PolicyUpdater module. This interface lists all the

predefined policy updates that are allowed, as defined in the policy description in language

L′, as well as all the policy updates that have been previously applied and are in effect. As

with the core PolicyUpdater system, administrators are allowed only the following opera-

tions:

• Apply a policy update or a sequence of policy updates to the policy base. Note that

like language L, in language L′ policy updates are predefined within the policy base

themselves.

• Revert to a previous state of the policy base by removing a previously applied policy

update from the policy base.

66

Chapter 4

Temporal Constraints in
Authorisation Policies

4.1 Introduction

An obvious limitation of language L is its lack of expressive power to represent time-

dependent authorisations. Consider the following authorisation rule:

Bob holds read access to file f between 9 : 00 AM and 5 : 00 PM

The authorisation information above can be broken down into two parts: an authorisa-

tion part, i.e. “Bob holds read access to file f”, and a temporal part, i.e. “between 9:00 AM

and 5:00 PM”. As language L can already express authorisations, we focus our attention to

the temporal part. A naive attempt to extend language L to express time may involve adding

two extra parameters to each authorisation atom to represent the starting and ending time

points of the interval. For example, the authorisation rule above can be represented as:

holds(bob, read, f , 900, 1700)

The atom above may be interpreted to mean that the authorisation holds for all times

between 9:00 AM and 5:00 PM, inclusive. In this example, the granularity of time, or

the smallest unit of time that can be expressed, is one minute. Of course, a more general

approach is to use the domain of positive integers. With this approach, the system can

handle different granularities of time, where the choice of what time unit each discrete

value is interpreted as is left to the application. For example, if the temporal values are

defined to be the number of seconds since 12 midnight, 01 Jan 1970 (i.e. the beginning

of the UNIX epoch), then the atom below states that the authorisation holds at an interval

starting at 9:00 AM, 18 March 1976 and ending at 5:00 PM, 18 March 1976:

67

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

holds(bob, read, f , 195951600, 195980400)

While this approach gives the language enough expressive power to represent autho-

risations bound by literal time values, it is by no means expressive enough to model re-

lationships between the time values themselves. This deficiency is shown in the example

below:

Alice holds a write access right to file f0 after Bob holds a read access right to file f1

Such authorisation rule might arise in a situation where the access right write to file f0

can only be granted at some time after the read access right to file f1 has been granted and

revoked. This example shows that the specific times at which authorisations hold are not as

important as the relationship between the times themselves. This authorisation rule may be

represented as follows:

holds(alice, write, f0, ι0)

holds(bob, read, f0, ι1)

after(ι0, ι1)

The example above states that alice holds a write access right to file f0 at some time

interval ι0, bob holds a read access right to file f1 at some time interval ι1, and that the

interval ι0 occurs at some time after the interval ι1. As mentioned earlier, the actual values

of the time intervals ι0 and ι1 is not as important as the fact that the interval ι0 occurs after

interval ι1.

The rest of this chapter discusses how temporal constraints can be incorporated into the

authorisation language. The next section introduces Allen’s temporal interval algebra to

express relations between time values, followed by a section that outlines extensions to this

algebra, and finally, the last section gives a detailed formalisation of a new authorisation

language that utilises the interval algebra to support temporal constraints.

4.2 Allen’s Temporal Interval Algebra

Allen’s interval algebra [2] is based on the fact that for any two well defined time intervals,

there exists exactly one interval relation between them. The strength of the algebra lies

not just on the formalisation of these relations, but also on its ability to handle disjunctive

interval relations between undefined time intervals.

For example, given an interval ι0, defined as 24th of September, 1995 to 25th of Septem-

ber, 1995; and interval ι1, defined as 25th of December 1995 to 1st of January 1996. From

68

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

the definitions of these intervals, it is easy to conclude that interval ι0 is before interval ι1,

since the finishing end point of interval ι0 occurs before the starting end point of interval ι1.

The strength of the interval algebra can be illustrated by considering intervals without

endpoint definitions, but rather as having disjunctive relations with other intervals. For

example, given three intervals ι0, ι1 and ι2 whose bounding endpoints are not known. The

algebra allows us to conclude that if ι0 occurs either before or during ι1 and ι2 occurs after

ι1, then the interval ι0 must occur before ι2.

The rest of the section gives a detailed overview of Allen’s interval algebra.

4.2.1 Time Points and Time Intervals

The preceding introduction hinted the difference between a time point and a time interval.

This sub section aims to give a more formal distinction between the two.

A point in time represents an event with zero duration, or an event that occurs instan-

taneously, such as the switching on of a light bulb, or the moment the sun has risen in the

morning.

A time interval, on the other hand, is defined to be the time that has elapsed between

two given time points. For example, the interval one might call lunch hour may be defined

as the time elapsed between the time points 1 PM and 2 PM.

Formally, a time interval ι is defined by its starting end point ι− and a finishing end

point ι+, where ι− < ι+.

One might argue that time point events such as the switching on of a light bulb are not

instantaneous, meaning that time, no matter how small the value, has elapsed between the

instant that electricity flowed through light bulb’s filament and the instant the light from the

bulb reaches the observer’s eyes. One can further argue that the “instant” that electricity

flowed through the bulb’s filament is not instantaneous, once we realise that the speed of

light and electricity is finite. In other words, any given event can always be divided into

sub-events. This argument is more evident in the sunrise example.

To solve this problem, Allen’s algebra defines time intervals as the most basic entities.

This means time points are not used to define time intervals, but instead, each interval is

defined only in terms of its relationship with other intervals.

4.2.2 Time Interval Relations

As shown in Figure 4.1, the algebra defines 13 disjoint relations that can occur between any

two intervals. For the sake of clarity, we define each temporal interval relation below in

terms of the relationships of the end points of their intervals:

69

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

i1

i0

Before

i1

i0

Meets

i0

i1

During

i0

i1

Overlaps

i0

i1

Starts

i0

i1

Finishes

i0

i1

Equals

i0

i1

After

i0

i1

Finished By

i0

i1

Started By

i0

i1

Overlapped By

i0

i1

Contains

i1

i0

Met By

Figure 4.1: Thirteen Temporal Interval Relations

70

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

1. Before. Interval ι0 is said to be before interval ι1 if and only if ι+0 < ι−1 .

2. After. Interval ι0 is said to be after interval ι1 if and only if ι−0 > ι+1 . Note that this is

an inverse of the before relation.

3. Meets. Interval ι0 is said to meet interval ι1 if and only if ι+0 = ι−1 .

4. Met By. Interval ι0 is said to be met by interval ι1 if and only if ι−0 = ι+1 . Note that

this is an inverse of the meets relation.

5. During. Interval ι0 is said to be during interval ι1 if and only if ι−0 > ι−1 and ι+0 < ι+1 .

6. Contains. Interval ι0 is said to contain interval ι1 if and only if ι−0 < ι−1 and ι+0 > ι+1 .

Note that this is an inverse of the during relation.

7. Overlaps. Interval ι0 is said to overlap interval ι1 if and only if ι−0 < ι−1 , ι+0 > ι−1 and

ι+0 < ι+1 .

8. Overlapped By. Interval ι0 is said to be overlapped by interval ι1 if and only if ι−0 >

ι−1 , ι−0 < ι+1 and ι+0 > ι+1 . Note that this is an inverse of the overlaps relation.

9. Starts. Interval ι0 is said to start interval ι1 if and only if ι−0 = ι−1 and ι+0 < ι+1 .

10. Started By. Interval ι0 is said to be started by interval ι1 if and only if ι−0 = ι−1 and

ι+0 > ι+1 . Note that this is an inverse of the the starts relation.

11. Finishes. Interval ι0 is said to finish interval ι1 if and only if ι−0 > ι−1 and ι+0 = ι+1 .

12. Finished By. Interval ι0 is said to be finished by interval ι1 if and only if ι−0 < ι−1 and

ι+0 = ι+1 . Note that this is an inverse of the finishes relation.

13. Equals. Interval ι0 equals interval ι1 if and only if ι−0 = ι−1 and ι+0 = ι+1 .

For example, given intervals lunch hour and work hours, defined as 1 PM to 2 PM and 9

AM to 5 PM, respectively. Since 1 PM (1300 hours) is greater than 9 AM (0900 hours) and

2 PM (1400 hours) is less than 5 PM (1700 hours), then the interval lunch hour is during

the interval work hours.

4.2.3 Inferring New Relations

As mentioned earlier, the strength of the algebra is its ability to infer new relations from

existing ones. This is achieved by taking advantage of the transitive properties of relations.

For example, given that interval ι0 is before interval ι1 and interval ι1 is before interval ι2.

Regardless of what the end points are, interval ι0 is before interval ι2.

71

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

While simple relations like the one shown in the above example may seem intuitive, we

quickly realise that it may not be so if we consider that a relation that exists between any two

intervals may be given as a disjunctive set of possible relations. For example, the relation

between interval ι0 and interval ι1 may be given as a set of possible relations {before, after,

during}.
Another issue is propagation. Given that the temporal knowledge base is populated by

these disjunctive interval relations, adding new pieces of information may narrow down the

set of possible relations between two intervals. This in turn may lead to the trimming down

of other relations between other interval pairs. In fact, as new and more specific information

are added into the knowledge base, its effects may propagate to other relations.

Interval Relation Network

The temporal interval relation knowledge base is represented as a network whose nodes

represent intervals and the arcs between them represent a set of possible relations that hold

between the two intervals. Note that although this representation allows the assignment of a

set of relations between any two intervals, because the relations are mutually exclusive, we

know that only one of these relations actually holds. The fact that some interval pairs have

a set of relations between them only suggests that the information given is insufficient to

define the exact relation that holds between the intervals. Formally, we define the interval

relation network as follows:

Definition 4.1 A interval relation network is a collection of nodes and arcs, where each

node represents a single temporal interval and each arc represents a set of possible relations

between two intervals. For any node pair, there is exactly one arc between them.

The interval relation network is maintained in such a way that each node is connected

to every other node in the network. In cases where no information is given to define an arc,

we use the default arc which contains a set of all 13 relations. As a matter of convention in

the notation, we only show one arc between two nodes. The reverse arc, composed of the

inverses of the relations represented by the first arc, is omitted.

Figure 4.2 gives an example of a network with three nodes: ι0, ι1 and ι2 and the follow-

ing relations:

• Interval ι0 is before or during interval ι1.

• Interval ι1 overlaps interval ι2.

72

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

In this example, note that because no relation is defined for intervals ι0 and ι2, the

corresponding arc between these nodes in Figure 4.2 is labelled All, meaning the relation

set contains all 13 possible relations.

1

0

2 ιι

ι

Before
During

Overlaps

All

Figure 4.2: Network Representation Example

With the network structure defined, we can now formally define the three basic network

operators:

Definition 4.2 Given a temporal interval network NET . The three basic network opera-

tions are as follows:

1. The NET.Get(ι0, ι1) operator returns the relation set on the arc between intervals

ι0 and ι1.

2. The NET .Replace(ι0, ι1, rs) operator replaces the relation set on the arc between

intervals ι0 and ι1 with the relation set rs.

3. The NET.AddRel(ι0, ι1, rs) operator adds the relation set rs to the arc between

intervals ι0 and ι1, and propagates the effects of this change to the rest of the network.

As described in the definition above, the NET.Get() and NET.Replace() operators

are simple get() and set() operations on arc labels. In contrast, theNET.AddRel() operator

requires a more complex algorithm to perform the propagation. This algorithm is discussed

in detail in the next section.

Propagation Algorithm

The algorithm works as follows. As a starting point, we assume that the network contains

complete interval relation information, i.e. at each node, there is an arc that connects it to

73

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Before After During Contains Overlaps Overlapped By Meets Met Starts Started By Finishes Finished By
(BEF) (BEI) (DUR) (DUI) (OVR) (OVI) (MET) (MEI) (STA) (STI) (FIN) (FII)

Before BEF ALL BEF BEF BEF BEF BEF BEF BEF BEF BEF BEF
(BEF) OVR OVR OVR OVR

MET MET MET MET
DUR DUR DUR DUR
STA STA STA STA

After ALL BEI BEI BEI BEI BEI BEI BEI BEI BEI BEI BEI
(BEI) OVI OVI OVI OVI

MEI MEI MEI MEI
DUR DUR DUR DUR
FIN FIN FIN FIN

During BEF BEI DUR ALL BEF BEI BEF BEI DUR BEI DUR BEF
(DUR) OVI OVI OVI OVR

MET MEI MEI MET
DUR DUR DUR DUR
STI FIN FIN STA

Contains BEF BEI OVR DUI OVR OVI OVR OVI DUI DUI DUI DUI
(DUI) MET DUI DUR DUI DUI DUI DUI FII STI

DUI MEI STA FII STI FII STI OVR OVI
FII STI FIN

DUI
STI
FII
EQL

Overlaps BEF BEI OVR BEF BEF OVR BEF OVI OVR DUI DUR BEF
(OVR) OVI DUR OVR OVR OVI DUI FII STA OVR

DUI STA MET MET DUR STI OVR OVR MET
MEI DUI STA
STI FII FIN

DUI
STI
FII
EQL

Overlapped By BEF BEI OVI BEI OVR BEI OVR BEI OVI OVI OVI OVI
(OVI) OVR DUR OVI OVI OVI DUI DUR BEI DUI

MET FIN MEI DUR MEI FII FIN MEI STI
DUI DUI STA
FII STI FIN

DUI
STI
FII
EQL

Meets BEF BEI OVR BEF BEF OVR BEF FIN MET MET DUR BEF
(MET) OVI DUR DUR FII STA

MEI STA STA EQL OVR
DUI
STI

Met By BEF BEI OVI BEI OVI BEI STA BEI DUR BEI MEI MEI
(MEI) OVR DUR DUR STI FIN

MET FIN FIN EQL OVI
DUI
FII

Starts BEF BEI DUR BEF BEF OVI BEF MEI STA STA DUR BEF
(STA) OVR OVR DUR STI MET

MET MET FIN EQL OVR
DUI
FII

Started By BEF BEI OVI DUI OVR OVI OVR MEI STA STI OVI DUI
(STI) OVR DUR DUI DUI STI

MET FIN FII FII y EQL
DUI
FII

Finishes BEF BEI DUR BEI OVR BEI MET BEI DUR BEI FIN FIN
(FIN) OVI DUR OVI OVI FII

MEI STA MEI MEI EQL
DUI
STI

Finished By BEF BEI OVR DUI OVR OVI MET STI OVR DUI FIN FII
(FII) OVI DUR DUI OVI FII

MEI STA STI DUI EQL
DUI
STI

Table 4.1: Transitivity Table

74

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

every other node. Where there is no defined relationship between two nodes, the default arc

is used to connect these two nodes. The algorithm is invoked whenever new information

is to be added into the network. Whenever a new relation is added into the network, all

consequences of this new relation are also added into the network. These consequences are

computed through the transitive closure of the network. The following example illustrates

this procedure.

Given 3 intervals ι0, ι1 and ι2, and the relation ι0 is before ι1. Suppose the new relation

ι2 is during ι1 is added into the network. The algorithm then infers that ι0 is before ι2. This

new relation is again added into the network in a similar way, possibly inferring other new

relations as it is added. This procedure is repeated until no new information is yielded.

Table 4.1 shows the basic transitivity rules. For any 3 intervals ι0, ι1 and ι2, the rela-

tion(s) between intervals ι0 and ι2 is shown in the intersection of the row that contains the

relation between ι0 and ι1, and the column that contains the relation between ι1 and ι2.

Before we can define the actual algorithm, we must first define a few functions. For

any single relations r0 and r1, the function Trans1(r0, r1) returns the relation set rs that

corresponds to the intersection of r0 and r1 in Table 4.1.

Using this function, we can then define the extended function Trans2(rs0, rs1) shown

in Algorithm 4.1, which takes a pair of relation sets rs0 and rs1 as input, and returns the

relation set rs which contains all the possible relations inferred from the two given relation

sets using the Trans1() function.

Algorithm 4.1 Trans2()

FUNCTION Trans2(rs0, rs1)

rs = ∅
FOR each r0 ∈ rs0 DO

FOR each r1 ∈ rs1 DO

rs = rs ∪ Trans1(r0, r1)

ENDDO

ENDDO

RETURN rs

ENDFUNCTION

In addition to these functions, we also define a standard queue structure Q which stores

network arcs, i.e. a pair of intervals and a relation set that holds between the two intervals.

Thus, we have three operators for the queue structure:

• Q.Enqueue(ι0, ι1, RS) stores the given arc to the end of the structure.

• Q.Dequeue() returns and removes the arc at the front of the structure.

75

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

• Q.IsEmpty() returns true if the queue is empty and false otherwise.

The NET.AddRel() algorithm shown in Algorithm 4.2 works as follows. Every time

a new arc (ι0, ι1, rs) is added, the algorithm finds the transitive relation set RS between

each of these intervals and every other interval I in the network, i.e. the algorithm finds

RS = Trans2(NET.Get(ι, ι0), rs) for every other interval I in the network. If this new

relation set RS contains more specific information than what is already in the network, i.e.

RS ⊂ NET.Get(I , ι1), then this new arc between I and ι1 (shown in Figure 4.3) is again

put through the same algorithm, as it might yield more relation changes.

I 0 1ι ιrs

RS

Figure 4.3: New Relation RS From Interval I and Interval ι1

Note that the algorithm also attempts to form new transitive relations between the given

intervals ι0 and ι1 and all other intervals I in the network such that interval I is to the right

of the other two intervals (shown in Figure 4.4).

1ι I0ι rs

RS

Figure 4.4: New Relation RS From Interval ι0 and Interval I

Algorithm 4.2 NET.AddRel()

FUNCTION NET.AddRel(ι0, ι1, rs)

Q.Enqueue(ι0, ι1, rs)

WHILE NOT Q.IsEmpty() DO

(ι′0, ι′1, rs′) = Q.Dequeue()

NET.Replace(ι′0, ι′1, rs′)

FOR each interval ι′′ ∈ NET DO

IF ι′′ != ι′0 AND ι′′ != ι′1 THEN

rs′′ = Trans2(NET.Get(ι′′, ι′0), rs′)

rs′′′ = NET.Get(ι′′, ι′1) ∩ rs′′

76

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

IF rs′′′ ⊂ NET.Get(ι′′, ι′1) THEN

Q.Add(ι′′, ι′1, rs′′′)

ENDIF

ENDIF

ENDDO

FOR each interval ι′′ ∈ NET DO

IF ι′′ != ι′0 AND ι′′ != ι′1 THEN

rs′′ = Trans2(rs′, NET.Get(ι′1, ι′′))

rs′′′ = NET.Get(ι′0, ι′′) ∩ rs′′

IF rs′′′ ⊂ NET.Get(ι′0, ι′′) THEN

Q.Add(ι′0, ι′′, rs′′′)

ENDIF

ENDIF

ENDDO

ENDDO

ENDFUNCTION

Example 4.1 Given a network with three intervals ι0, ι1 and ι2 where no relation between

any of the intervals are known. As no relations are given, each arc in the network as shown

in Figure 4.5 is the default arc.

0ι 2ι1ι
rs0 rs1

rs2

ALL ALL

ALL

Figure 4.5: Network with 3 Default Arcs

Now, suppose the relation between interval ι0 and interval ι1 is narrowed down to the

relation set {before, meets, overlaps}, i.e., the following operation is executed:

NET.AddRel(ι0, ι1, {BEF , MET , OV R})

This operation will yield the network shown in Figure 4.6. Note that because every arc in

the network contains all relations, the effects of the NET.AddRel() operation are limited

to one arc.

Now, if the relation set {starts, finishes} is added to the arc between interval ι1 and

interval ι2:

NET.AddRel(ι1, ι2, {STA, FIN})

77

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

0ι 2ι1ι
rs0 rs1

rs2

OVR
MET
BEF

ALL

ALL

Figure 4.6: Network after NET.AddRel(ι0, ι1, {BEF , MET , OV R})

The algorithm will also compute the relation set rs2 between interval ι0 and interval ι2
by using the relation set rs0 between intervals ι0 and interval ι1, and relation set rs1 be-

tween intervals ι1 and interval ι2 to complete the transitivity. In other words, the algorithm

computes the following:

rs2 = Trans2(rs0, rs1)

rs2 = Trans2({BEF , MET , OV R}, {STA, FIN})

By referring to the transitivity table in Table 4.1, we note the following:

Trans1(BEF , STA) = {BEF}

Trans1(BEF , FIN) = {BEF , OV R, MET , DUR, STA}

Trans1(MET , STA) = {MET}

Trans1(MET , FIN) = {DUR, STA, OV R}

Trans1(OV R, STA) = {OV R}

Trans1(OV R, FIN) = {DUR, STA, OV R}

Therefore, as Trans2() takes the union of all the relation sets returned by calls to Trans1(),

we have:

rs2 = {BEF , OV R, MET , DUR, STA}

Finally, because rs2 is a subset ofNET.Get(ι0, ι2), the algorithm replaces the arc between

ι0 and ι2 with rs2, as shown in Figure 4.7.

4.3 Extensions to Allen’s Interval Algebra

In an authorisation system, an agent that enforces an authorisation policy must be able to

match the policy’s entities to objects observable by the agent, e.g. a subject in the policy

78

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

0ι 2ι1ι
rs0 rs1

rs2

OVR
MET
BEF

STA
FIN

DUR
MET

BEF OVR
STA

Figure 4.7: Network after NET.AddRel(ι1, ι2, {STA, FIN})

is mapped to a user that logs in, or an object in the policy is mapped to a certain file in the

filesystem. Similarly, an agent must also be able to map time intervals in a policy to events

that are observable by the agent. For example, the interval logged on in the policy may be

mapped to the time between a certain user logs in and out of the system.

In certain situations, however, it is convenient to map intervals in the policy to a particu-

lar time scale, such as the agent’s real time clock. These situations might arise when certain

authorisations need to be granted or revoked at a certain time, instead of being triggered by

observable events. To map policy intervals to real time, it is necessary to define them in

terms of points in real time.

In the previous section, we have shown that Allen’s algebra defines temporal intervals

as the primitive, where each interval is defined not by time points, but by their relationships

with other intervals. In this section, we will attempt to show the extensions to the interval

algebra to allow it to express intervals in terms of time points.

4.3.1 Time Points Revisited

By allowing time point definitions to be expressed in the algebra, we must formally define

time points.

Disregarding the physical effects of gravitation and velocity on time, we make the as-

sumption that time is linear, absolute and universal. That is, time always flows in one

direction: from past to future; that the passage of time as seen by one system is the same for

any other system; and that all systems define time against a universal frame of reference.

For simplicity, we further assume that time is not a continuous line, but is instead made up

of discrete time points.

As this definition goes against the more intuitive notion of continuous time lines, one

might see the problem of events “falling through” the gaps between the discrete time points

in the non-continuous time line.

To go around this problem, we allow the time point granularity to be chosen arbitrarily.

Ideally, for a specific application, one would choose a granularity that is at least as small as

79

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

the smallest interval in that application. In practice, however, such choices are limited by

implementing system’s clock and other hardware and software latencies.

In the light bulb and sunrise example in the previous section, if we choose a granularity

of 1 second, then the switching on of a light bulb is an event that occurs at a specific time

point. A granularity of 1 second, however, means that a sunrise is not an event but an

interval, given the fact that in most parts of the world, the sun takes a few minutes to rise

above the horizon. However, if we choose a granularity of 1 hour (and we do not live in

the polar regions), a sunrise becomes an event that occurs at a single point in our chosen

time scale. We can therefore argue that given a specific time granularity, some events can

be treated as instantaneously occurring at a specific time point.

Regardless of the granularity chosen, the domain of time points is the set of positive

integers Z+.

4.3.2 Defining Intervals in Terms of Time Points

Definition 4.3 A well-defined interval ι is an interval whose end points ι− ∈ Z+ and ι+

∈ Z+ are defined, where ι− < ι+. A regular interval is an interval whose end points are

not known.

Under this definition, we can conclude that for any two well-defined intervals there is

exactly one interval relation that holds between them. Algorithm 4.3 shows a function that

calculates this relation given the end points of two well-defined intervals.

By using the Compute() function in Algorithm 4.3, we can now define a network op-

erator, NET.Bind(ι, ι−, ι+), that assigns the end points ι− and ι+ to the existing interval

ι in the network. By allowing such end points to be defined for any interval, thereby mak-

ing them well-defined intervals, we are also allowing the possibility of introducing new

relations with this interval. Furthermore, any new relations gathered by comparing the end

points of well-defined intervals are subject to the same propagation algorithms shown in the

previous section. Algorithm 4.4 shows how the NET.Bind() operator achieves this.

Algorithm 4.3 Compute()

FUNCTION Compute(ι−0 , ι+0 , ι−1 , ι+1)

IF ι−0 == ι−1 THEN

IF ι+0 == ι+1 THEN

RETURN {equals}
ELSE IF ι+0 < ι+1 THEN

RETURN {starts}
ELSE

RETURN {started by}

80

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ENDIF

ELSE IF ι−0 < ι−1 THEN

IF ι+0 == ι+1 THEN

RETURN {finished by}
ELSE IF ι+0 < ι+1 THEN

IF ι+0 == ι−1 THEN

RETURN {meets}
ELSE IF ι+0 < ι−1 THEN

RETURN {before}
ELSE

RETURN {overlaps}
ENDIF

ELSE

RETURN {contains}
ENDIF

ELSE

IF ι+0 == ι+1 THEN

RETURN {finishes}
ELSE IF ι+0 < ι+1 THEN

RETURN {during}
ELSE

IF ι−0 == ι+1 THEN

RETURN {met by}
ELSE IF ι−0 < ι+1 THEN

RETURN {overlapped by}
ELSE

RETURN {after}
ENDIF

ENDIF

ENDIF

ENDFUNCTION

Algorithm 4.4 Net.Bind()

FUNCTION NET.Bind(ι, ι−, ι+)

FOR each interval ι′ ∈ NET DO

IF ι′ != ι THEN

IF ι′ is well-defined THEN

rs = Compute(ι−, ι+, ι′−, ι′+)

NET.AddRel(ι, ι′, rs)

ENDIF

ENDIF

ENDDO

81

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ENDFUNCTION

4.4 Formalisation

In this section, we attempt to formalise a new language, LT , with the same expressive

power as language L to represent authorisation policies, but with extensions to also express

temporal constraints. Like language L, language LT is also a first-order logic language. As

such, any languageLT policy can be translated into a normal logic program to derive answer

sets, from which queries can be evaluated. Section A.2 contains the full BNF specification

of language LT .

4.4.1 Syntax

Components of Language LT

• Identifiers

In language LT , there are 4 general types of identifiers:

1. Entity Identifiers. As with language L, language LT includes six disjoint entity

sorts: subject, access rights, objects, subject groups, access right groups and

object groups. The syntax for each entity type is a single lower case alpha

character followed by zero or more alphanumeric or underscore characters:

[a-z][a-zA-Z0-9]

2. Interval Identifiers. The main difference between language L and language LT

is that in addition to the six entity sorts, language LT also includes an additional

time interval sort. As it occupies a different name space from the other sorts,

interval identifiers share the same syntax.

3. Policy Update Identifiers. These identifiers are used as labels to name policy

updates. They occupy a different name space from other identifiers and hence

share the same syntax as entity and interval identifiers.

4. Variable Identifiers. In language L, variable identifiers are used to represent

entity identifiers. In contrast, language LT variable identifiers are used to repre-

sent both entity and interval identifiers. The list below shows the syntax of the

different types of variable identifiers:

(a) Subject Variables

S[SG][a-zA-Z0-9]

82

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

(b) Access Right Variables

A[SG][a-zA-Z0-9]

(c) Object Variables

O[SG][a-zA-Z0-9]

(d) Interval Variables

I[a-zA-Z0-9]

• Authorisation Atoms, Facts and Expressions

Authorisation atoms of language LT are similar to the to the atoms of language L,

except each atom includes an interval parameter that indicates the time at which that

atom holds. As with language L, there are three types of atoms:

1. Holds Atom. The syntax below shows an atom that states that subject sub-id

holds the access right acc-id for object obj-id at time interval int-id.

holds(<sub-id>,

<acc-id>,

<obj-id>,

<int-id>)

2. Member Atom. The syntax shown below is that of an atom that states that the

single entity single-id is a member of the group entity group-id for the duration

specified by interval int-id.

memb(<single-id>, <group-id>, <int-id>)

3. Subset Atom. Below is the syntax of an atom that states that the group entity

group-id-0 is a subset of the group entity group-id-1 at time interval int-id.

subst(<group-id-0>, <group-id-1>, <int-id>)

Like language L, language LT facts state that relationship represented by the corre-

sponding atom its negation (as indicated by the “!” character prefix) holds.

An expression is either a fact or a conjunction of facts separated by the comma “,”

character. An atom, fact or expression composed entirely of entity and interval iden-

tifiers (no variables) are called ground atoms, facts or expressions, respectively.

• Interval Atoms and Expressions

83

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Noting the fact that the inverse relation between any intervals i0 and i1 is equal to the

relation between intervals i1 and i0, for the sake of brevity, language LT defines only

7 out of the 13 interval relations in the algebra. These relations, together with two

interval identifiers make up the language’s interval atoms:

<rel-id>(<int-id-0>, <int-id-1>)

where rel-id indicates the relation between interval int-id-0 and interval int-id-1,

and is one of the following: equals, before, during, overlaps, meets, starts or

finishes.

An interval expression in language LT is a group of interval atoms separated by the

comma “,” character. As the interval algebra allows disjunctions, the meaning of

the comma within an interval expression may be conjunctive or disjunctive. If an

interval expression contains two atoms that differ only by their relation (meaning the

interval pairs are the same), then the comma between these atoms indicates a logical

or. Commas between other interval atoms indicate a logical and. For example, the

following interval expression is interpreted as “interval i0 is before or after interval i1
and interval i2 is during interval i0”:

before(i0, i1), before(i1, i0), during(i2, i0)

Like their authorisation counterparts, interval atoms and expressions that do not have

variable identifiers are called ground interval atoms and expressions.

Identifier Declarations

In language LT , both entity and interval identifiers must be declared before they are used

anywhere in the program. The syntax for declaring entity identifiers in language LT is the

same as the syntax in language L:

entity sub|acc|obj[-grp] <ent-id>[, ...];

Interval identifiers may be declared with or without end points. Note that once intervals

are assigned end points, they are bound to those end points for the lifetime of the program.

End points, if declared with an interval identifier, must be a positive integer as indicated in

the following syntax:

interval <int-id> [\[ep0, ep1\]][, ...];

where ep0 ∈ Z+, ep1 ∈ Z+ and ep0 < ep1.

84

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Initial Fact Declarations

Like language L, language LT allows the declaration of initial state facts. Ground facts

declared in this manner hold until a policy update causes them to be otherwise. The syntax

shown below declares all facts in the ground authorisation expression gnd-auth-exp as

initial state facts.

initially <gnd-auth-exp>;

Interval Constraint Declarations

Relations between intervals are expressed in language LT through interval constraints. In-

terval relations defined by interval constraints hold for the entire lifetime of the program.

Such relations may be declared in the following manner:

relation <gnd-int-exp>;

where gnd-int-exp is a ground interval expression.

The example below declares an interval constraint that states that interval i0 is before or

starts interval i1, interval i1 is during or meets interval i2, and interval i2 meets interval

i3:

relation

before(i0, i1),

starts(i0, i1),

during(i1, i2),

meets(i1, i2),

meets(i2, i3);

Authorisation Constraint Declarations

Like the constraint declarations in language L, authorisation constraint declarations in lan-

guage LT are used to define logical rules that always holds, even after a policy update is

applied. The difference, as shown by the syntax below, is the addition of the where clause.

always <auth-exp-0>

[implied by <auth-exp-1>]

[with absence <auth-exp-2>]

[where <int-exp>];

85

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

The meaning of the statement is essentially the same as its language L counterpart: ex-

pression auth-exp-0 holds if expression auth-exp-1 holds and there is no evidence that

expression auth-exp-2 holds. Any variables occurring in any of these expressions are

grounded to all defined entities and interval identifiers.

The where clause is used to define an interval expression int-exp which is used to place

a restriction on the interval identifiers used to ground interval variables occurring in the

authorisation expressions. Only those sets of interval identifiers that satisfy the expression

int-exp is used to replace the set of interval variables in the authorisation expressions. As

the where clause is used in the grounding of variables, it is important to note that it does not

make sense to have a ground interval expression in the where clause. Furthermore, not only

does the expression int-exp need to be non-ground, but every atom in this expression must

also be non-ground.

For example, given the following authorisation constraint declaration:

always holds(SS, a, o, I0)

implied by memb(SS, SG0, I1)

with absence !memb(SS, SG1, I1)

where starts(I0, I1);

Assuming that {ss0, ss1} is the set of single subjects, {sg0, sg1} is the set of group subjects

and {i0, i1, i2} is the set of intervals defined, with interval i0 during interval i1 and interval

i1 starting interval i2, the statement is equivalent to the following statements:

always holds(ss0, a, o, i1)

implied by memb(ss0, sg0, i2)

with absence !memb(ss0, sg1, i2);

always holds(ss1, a, o, i1)

implied by memb(ss1, sg0, i2)

with absence !memb(ss1, sg1, i2);

always holds(ss0, a, o, i1)

implied by memb(ss0, sg1, i2)

with absence !memb(ss0, sg0, i2);

always holds(ss1, a, o, i1)

implied by memb(ss1, sg1, i2)

with absence !memb(ss1, sg0, i2);

86

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Although the entity variables SS, SG0 and SG1 are grounded to every entity that

matches their respective types, the interval variables I0 and I1 are restricted to the intervals

i1 and i2, respectively, because they are the only interval pair that satisfies the restriction

placed by the where clause.

Policy Update Declarations

Like the authorisation constraint definition, policy update definitions of language LT are

similar to those of languageL, but with the extra where clause to limit the interval identifiers

that are used to ground interval variables that may occur in authorisation expressions.

The syntax below describes the declaration of a policy update update-id which, when

applied, causes the expression auth-exp-0 to hold if the expression auth-exp-1 already

holds.

<update-id>([<ent-var-0>[, ...]])

causes <auth-exp-0>

[if <auth-exp-1>]

[where <int-exp>];

When a policy update is applied, entity identifiers are supplied for each entity variable

ent-var-i. These entity identifiers are used to ground any matching entity variables that

may occur in either authorisation expressions auth-exp-0 or auth-exp-1. Entity variables

occurring in these expressions that do not match the variables in the variable list ent-var-n

are replaced by all defined entity identifiers that match the variable types. Interval variables

occurring in the authorisation expressions are grounded to sets of interval identifiers that

satisfy the interval expression int-exp.

Policy Update Directives

The policy update directives in language LT , like those in language L, are used to manipu-

late the policy update sequence list.

The three directives below are for adding a policy update into the update sequence list,

removing an update from the update sequence list, and showing the contents of the update

sequence list, respectively.

seq add <upd-id>([<id-0>[, ...]]);

seq del <n>;

seq list;

87

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

The directive is used to apply policy updates one at a time in the order in which they

appear in the update sequence list.

compute;

Query Directives

A ground query expression may be given to the system for evaluation. The syntax is as

follows:

query <gnd-auth-exp>;

Queries are evaluated against the policy base state derived from the application of policy

updates in the update sequence list. The system response for each query directive either true,

false or unknown.

Example 4.2 The example code below shows a full language LT policy description. In this

policy, three intervals are defined: work hours, morning hours and afternoon hours,

where worh hours starts at 9:00 AM and ends at 5:00 PM. Furthermore, the interval

constraint in the policy states that morning hours either starts or is during work hours,

afternoon hours either finishes or is during work hours, and morning hours is before

afternoon hours.

The authorisation constraint states that for all defined intervals I0, if grp1 holds the

read access right to file at interval I0, and there is no evidence that grp3 does not hold

the write access right to file at interval I0, then grp1 holds the write access right to file

at interval I0.

The policy update delete read definition states that when applied, the update will cause

some subject group SG0 to lose the read access right to some object OS0 at all intervals

I0 that either starts or is during the interval work hours.

/* entity declarations */

entity sub alice;

entity sub-grp grp1, grp2, grp3;

entity acc read, write;

entity obj file;

/* interval declarations */

88

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

interval work hours [0900, 1700];

interval morning hours;

interval afternoon hours;

/* initial fact statement */

initially

memb(alice, grp2, work hours),

subst(grp2, grp1, morning hours),

holds(grp1, read, file, work hours);

/* interval constraints */

relation

during(morning hours, work hours),

starts(morning hours, work hours);

relation

during(afternoon hours, work hours),

finishes(afternoon hours, work hours);

relation

before(morning hours, afternoon hours);

/* authorisation constraint */

always holds(grp1, write, file, I0)

implied by

holds(grp1, read, file, I0)

with absence

!holds(grp3, write, file, I0);

/* policy update declaration */

delete read(SG0, OS0)

causes

!holds(SG0, read, OS0, I0)

89

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

where

starts(work hours, I0),

during(work hours, I0);

/* add delete read to policy update sequence list */

seq add delete read(grp1, file);

compute;

/* queries */

query holds(grp1, write, file, morning hours);

query holds(grp1, read, file, morning hours);

query holds(alice, write, file, morning hours);

query holds(alice, read, file, morning hours);

4.4.2 Semantics

The domain description DLT of language LT is a finite set of intervals with end points,

initial state facts, temporal constraint rules, authorisation constraint rules, policy update

definitions and an ordered set ψ of policy update references.

Like language L, the semantics of language LT is best described by its translation into

an extended logic program, language LT ∗
. Formally, given a domain description DLT of

language LT , the translation is denoted by Trans(DLT).

The main difference between language LT and language LT ∗
is that each atom of the

latter also specifies the policy update state in which it holds. Another difference between

the two languages is that the temporal constraints of language LT is not directly expressed

in language LT ∗
. Instead, the interval algebra discussed at the beginning of this chapter is

used by the translation process to generate the appropriate authorisation rules with respect

to the given temporal constraints.

Before the translation process can be shown, we must first provide a formal definition

of language LT ∗
.

Language LT ∗

As hinted above, language LT ∗
is an extended logic program which is composed of facts

and rules that expresses an authorisation policy. The following are the components of the

90

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

language:

• Entities

Like language L∗, language LT ∗
defines a set E that contains all the defined subject,

access right and object (both singles and groups) entities. In addition to this set, we

also define all its subsets: single subject Ess, single access right Eas, single object Eos,
group subject Esg, group access right Eag, group object Eog, single and group subjects

Es, single and group access rights Ea, and single and group objects Eo.

• Intervals

Language LT ∗
defines a set I that contains all the defined time intervals from DLT .

• Atoms

A language LT ∗
atom is a binding of a set of entities, a temporal interval and a state.

The set Aσ contains all the atoms of state σ. The sets Aσh, Aσm and Aσh denotes all

holds, member and subset atoms of state σ, respectively, where Aσ = Aσh ∪ Aσm
∪ Aσs . The definitions of these subsets are shown below. To distinguish between the

atoms of the two languages, atoms of language LT ∗
are written with the hat character.

Aσh = { ˆholds(s, a, o, ι, σ) | s ∈ Es, a ∈ Ea, o ∈ Eo, ι ∈ I}
Aσm = Aσms ∪ Aσma ∪ Aσmo
Aσs = Aσss ∪ Aσsa ∪ Aσso
Aσms = { ˆmemb(e, g, ι, σ) | e ∈ Ess, g ∈ Esg, ι ∈ I}
Aσma = { ˆmemb(e, g, ι, σ) | e ∈ Eas, g ∈ Eag, ι ∈ I}
Aσmo = { ˆmemb(e, g, ι, σ) | e ∈ Eos, g ∈ Eog, ι ∈ I}
Aσss = { ˆsubst(g1, g2, ι, σ) | g1, g2 ∈ Esg, ι ∈ I}
Aσsa = { ˆsubst(g1, g2, ι, σ) | g1, g2 ∈ Eag, ι ∈ I}
Aσso = { ˆsubst(g1, g2, ι, σ) | g1, g2 ∈ Eog, ι ∈ I}

• Facts

The definition below states that a fact ρ̂σ is a logical statement that asserts that an

atom α̂ either holds or does not hold at a given state σ.

ρ̂σ = [¬]α̂

where α̂ ∈ Aσ

91

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

• Expressions

A language LT ∗
expression is a conjunction of facts separated by the comma charac-

ter. The expression below asserts that where 0 ≤ i ≤ n, each fact ρ̂i holds:

ρ̂0, ρ̂1, . . ., ρ̂n,

Translating Language LT to Language LT ∗

Unlike the translation of language L to language L∗, not all statements of language LT is

translated to language LT ∗
. In particular, as language LT ∗

does not express relationships

between temporal intervals, all language LT statements that denote these relationships are

not directly translated. Through the use of Allen’s interval algebra, the authorisation rules

that result from the consequences of these temporal relations are generated instead.

To describe the details of the translation Trans(DLT), we first define some translation

functions similar to those defined in Section 2.2.2 and Section 2.2.3.

• The Res(u, σ) function takes as input a policy update u ∈ ψ and a policy state σ, and

returns the policy state that results from applying the update u upon state σ.

• The CopyAtom(α̂, σ) function takes as input an atom α̂ of language LT ∗
and some

state σ, then returns an atom with the same type and with the same entities and interval

as atom α̂, but with state σ instead of the original state specified by α̂.

• The TransAtom(α, σ) function takes as input an atom α of language LT and some

state σ, then returns an equivalent atom of language LT ∗
with the same entities and

interval specified by α.

• The TransFact(ρ, σ) function is similar to the TransAtom function, but instead of

translating an atom, it takes a language LT fact ρ and some state σ then returns the

equivalent language LT ∗
fact.

With these functions defined, we can now outline the translation process:

Initialising the Temporal Interval Relation Network. The first step in the process is to

initialise the interval relation network with all the temporal intervals and all the given end

points defined in language LT . Recall that there are two ways a temporal interval may be

declared in language LT :

interval ι;

interval ι [ep0, ep1];

92

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

For both forms, the interval ι is added to the interval network. However, the second form

requires an additional step to register the end points:

NET.Bind(ι, ep0, ep1)

Populating the Temporal Interval Relation Network. The next step is to encode all

temporal constraints in language LT as interval relations in the interval relation network.

Temporal constraints are declared in language LT in the following way:

relation α0, . . ., αn;

Note that each interval atom αi above is in the form ri(ι0i, ι1i), where ri ∈ {equals,
before, . . .}, ι0i, ι1i ∈ I and 0 ≤ i ≤ n. We further note that under this notation, it is

possible to encounter a situation where two different interval atoms αi and αj can both

contain the same pair of intervals:

αi = ri(ι0i, ι1i)

αj = rj(ι0j , ι1j)

where

i 6= j,

ri 6= rj ,

ι0i = ι0j ,

ι1i = ι1j

According to the syntax definition of interval atoms in the previous section, in any given

interval expression, all interval atom pairs that satisfies the above condition are to be treated

as disjunctions in that expression, while those that do not are to be treated as conjunctions.

For simplicity, we introduce a normalised notation for interval expressions where each

interval atom in the expression contains a unique pair of intervals and a set of relations that

hold between those intervals. Formally, a normalised interval expression is in the following

form:

α0, . . ., αn

where each interval atom αi (0 ≤ i ≤ n) in the form:

αi = (ι0i, ι1i, {r0i, . . ., rxi})

93

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

satisfies the following condition:

¬∃αj ,

where

αj = (ι0j , ι1j , {r0j , . . ., ryj})

0 ≤ j ≤ n,

i 6= j

such that

ι0i = ι0j ,

ι1i = ι1j

Now, we define a functionNormaliseExp(ε) that takes a language LT interval expres-

sion ε as input and returns the normalised equivalent of that expression in the form shown

above. Formally, we have:

ε′ = NormaliseExp(ε)

For each (ι0i, ι1i, {r0i, . . ., rxi}) ∈ ε′, where 0 ≤ i < |ε′|, the following conditions are

satisfied:

1. For each rj ∈ {r0i, . . ., rxi}, where 0 ≤ j ≤ i, there exists an rj(ι0i, ι1i) ∈ ε

2. For each (ι0j , ι1j , {r0j , . . ., ryj}) ∈ ε′, where 0 ≤ j < |ε′| and i 6= j, (ι0i 6= ι0j ∨
ι1i 6= ι1j)

With the NormaliseExp() function defined, we can now populate the interval relation

network with relations expressed in language LT interval constraint statements. The steps

involved to achieve this is as follows. For each interval constraint statement in language

LT :

relation α0, . . ., αn;

By using the NormaliseExp() function, we obtain the normalised expression ε:

ε = NormaliseExp({α0, . . ., αn})

Finally, to register the interval constraint to the interval relation network, we make a call to

the following operator for each (ι0i, ι1i, rsi) ∈ ε, where 0 ≤ i < |ε|:

NET.AddRel(ι0i, ι1i, rsi)

94

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Variable Grounding. As language LT ∗
does not allow variables, all language LT expres-

sions containing entity or interval variables must be grounded in the translation process.

Although the task of grounding entity variables is a relatively straightforward procedure,

grounding interval variables involves additional steps due to the where clause of the lan-

guage. After generating the tuples to replace the variables, each of these tuples must also

be checked to ensure that they satisfy any given temporal constraints.

Before we can describe the grounding process in greater detail, we first define the fol-

lowing three functions:

• Type(ev)

The Type(ev) function returns the type of the given entity or variable ev: interval,

single-subject, group-subject, single-access-right, etc.

• V ar(ε)

Given a non-ground language LT authorisation or interval expression ε, this function

returns a set of unique variables that occurs in ε. If ε is ground, the function returns

∅.

• Replace(ε, V , t)

The function takes the following as input: a non-ground language LT authorisation

or interval expression ε, a set of variables V that occur in ε, and a tuple t containing

entities and intervals that correspond to the variables in V (|V | = |t| and ∀i, 0 ≤ i <
|V |, Type(Vi) = Type(ti)). The function returns ε with all variable occurences re-

placed with the corresponding entities or intervals from t. If ε is a ground expression,

ε is returned.

With these functions defined, we can now generalise the process of grounding both en-

tity and interval variables. Given a set V of unique entity and interval variables, the function

below returns a set of all possible |V |-tuples that can be used to replace the variables in V :

GenTuples1(V) = R0 × . . . × R|V |−1

where

∀ i, 0 ≤ i < |V |,

Ri =

Es, if Type(Vi) = subject

Ea, if Type(Vi) = access right
...

I, if Type(Vi) = interval

95

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

A variation of this function, shown below, generates tuples with respect to a given tem-

poral constraint. Given a language LT where clause with an interval expression ε and a set

V of variables that occur in ε, the following function returns a set of |V |-tuples, where each

tuple satisfies the condition given in ε:

GenTuples2(ε, V) = {t0, . . ., t|V |−1}

where

∀ i, 0 ≤ i < |V |, ti ∈ GenTuples1(V),

ε′ = NormaliseExp(Replace(ε, V , ti)),

∀ (ι0, ι1, rs) ∈ ε′, NET.Get(ι0, ι1) ⊆ rs

Initial Fact Rules. The initial fact rules are obtained directly from initial fact declaration

statements of language LT :

initially ρ0, . . ., ρn;

Each initial fact declaration statement of language LT in the form above corresponds to the

following language LT ∗
rules:

ρ̂i←

where

ρ̂i = TransFact(ρi, S0),

0 ≤ i ≤ n

Authorisation Constraint Rules. An authorisation constraint statement in language LT

is in the form:

always ρ00, . . ., ρ0n0

implied by ρ10, . . ., ρ1n1

with absence ρ20, . . ., ρ2n2

where r0, . . ., rn3;

The first step is to gather all the entity and interval variables that occur in all the expres-

sions above into a set V :

V = V ar((ρ00 , . . ., ρ0n0
)) ∪ V ar((ρ10 , . . ., ρ1n1

)) ∪ V ar((ρ20 , . . ., ρ2n2
))

96

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Using the set V , we generate a set of tuples T that satisfies the temporal constraint specified

by the where clause:

T = GenTuples2((r0, . . ., rn3), V)

Finally, the language LT ∗
equivalent of the authorisation constraint rule is the following

rules:

∀ (t, σ),

ρ̂σ00
← ρ̂σ10

, . . . , ρ̂σ1n1
, not ρ̂σ20

, . . . , not ρ̂σ2n2

...

ρ̂σ0n0
← ρ̂σ10

, . . . , ρ̂σ1n1
, not ρ̂σ20

, . . . , not ρ̂σ2n2

where

ρ̂σ0i = TransFact(Replace(ρ0i , V , t), σ), 0 ≤ i ≤ n0,

ρ̂σ1j = TransFact(Replace(ρ1j , V , t), σ), 0 ≤ j ≤ n1,

ρ̂σ2k = TransFact(Replace(ρ1k , V , t), σ), 0 ≤ k ≤ n2,

t ∈ T ,

S0 ≤ σ ≤ S|ψ|

Policy Update Rules. Obviously, only language LT policy update statements that are ap-

plied to the policy are actually translated to language LT ∗
rules. The translation process for

these rules are again similar to that of language L∗, except this time, the variable grounding

is subject to the constraints specified by the where clause. A language LT policy update

statement is shown below:

u causes ρ00, . . ., ρ0n0

if ρ10, . . ., ρ1n1

where r0, . . ., rn2;

Like the authorisation constraint rules, the first step in the translation process is to generate

a set V of entity and interval variables that occur in all the expressions:

V = V ar(ρ00 , . . ., ρ0n0
) ∪ V ar(ρ10 , . . ., ρ1n1

)

With the variable set V and a where clause expression (r0, . . ., rn2), a set of tuples T can

be generated such that each tuple t ∈ T satisfies the where clause constraint:

97

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

T = GenTuples2((r0, . . ., rn2), V)

By using the entities and intervals in each tuple in set T to ground all the variables, we can

now define the policy update rules in language LT ∗
:

∀ t,

ρ̂00 ← ρ̂10 , . . ., ρ̂1n1

...

ρ̂0n0
← ρ̂10 , . . ., ρ̂1n1

where

ρ̂0i = TransFact(Replace(ρ0i , V , t), Res(u, σ)), 0 ≤ i ≤ n0,

ρ̂1j = TransFact(Replace(ρ1j , V , t), σ), 0 ≤ j ≤ n1,

t ∈ T ,

S0 ≤ σ ≤ S|ψ|

Inheritance Rules. As with language L∗, a set of language LT ∗
rules are needed to ex-

press the inheritance properties of members and subsets. While these rules are similar to

their respective language L∗ counterparts, the definitions are slightly different due to the

representation of temporal intervals.

1. Subject Group Member Inheritance Rules

∀ (ss, sg, a, o, ι σ),

ˆholds(ss, a, o, ι, σ)←
ˆholds(sg, a, o, ι, σ), ˆmemb(ss, sg, ι, σ),

not ¬ ˆholds(ss, a, o, ι, σ)

¬ ˆholds(ss, a, o, ι, σ)←
¬ ˆholds(sg, a, o, ι, σ), ˆmemb(ss, sg, ι, σ)

where

ss ∈ Ess,
sg ∈ Esg,

a ∈ Ea,

98

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

o ∈ Eo,
ι ∈ I,

S0 ≤ σ ≤ S|ψ|

2. Access Right Group Member Inheritance Rules

∀ (s, as, ag, o, ι σ),

ˆholds(s, as, o, ι, σ)←
ˆholds(s, ag, o, ι, σ), ˆmemb(as, ag, ι, σ),

not ¬ ˆholds(s, as, o, ι, σ)

¬ ˆholds(s, as, o, ι, σ)←
¬ ˆholds(s, ag, o, ι, σ), ˆmemb(as, ag, ι, σ)

where

s ∈ Es,
as ∈ Eas,
ag ∈ Eag,

o ∈ Eo,
ι ∈ I,

S0 ≤ σ ≤ S|ψ|

3. Object Group Member Inheritance Rules

∀ (s, a, os, og, ι σ),

ˆholds(s, a, os, ι, σ)←
ˆholds(s, a, og, ι, σ), ˆmemb(os, og, ι, σ),

not ¬ ˆholds(s, a, os, ι, σ)

¬ ˆholds(s, a, os, ι, σ)←
¬ ˆholds(s, a, og, ι, σ), ˆmemb(os, og, ι, σ)

where

s ∈ Es,
a ∈ Ea,

os ∈ Eos,

99

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

og ∈ Eog,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

4. Subject Group Subset Inheritance Rules

∀ (sg0, sg1, a, o, ι, σ),

ˆholds(sg0, a, o, ι, σ)←
ˆholds(sg1, a, o, ι, σ), ˆsubst(sg0, sg1, ι, σ),

not ¬ ˆholds(sg0, a, o, ι, σ)

¬ ˆholds(sg0, a, o, ι, σ)←
¬ ˆholds(sg1, a, o, ι, σ), ˆsubst(sg0, sg1, ι, σ)

where

sg0, sg1 ∈ Esg,

a ∈ Ea,

o ∈ Eo,
sg0 6= sg1,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

5. Access Right Group Subset Inheritance Rules

∀ (s, ag0, ag1, o, ι, σ),

ˆholds(s, ag0, o, ι, σ)←
ˆholds(s, ag1, o, ι, σ), ˆsubst(ag0, ag1, ι, σ),

not ¬ ˆholds(s, ag0, o, ι, σ)

¬ ˆholds(s, ag0, o, ι, σ)←
¬ ˆholds(s, ag1, o, ι, σ), ˆsubst(ag0, ag1, ι, σ)

where

s ∈ Es,
ag0, ag1 ∈ Eag,

o ∈ Eo,

100

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ag0 6= ag1,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

6. Object Group Subset Inheritance Rules

∀ (s, a, og0, og1, ι, σ),

ˆholds(s, a, og0, ι, σ)←
ˆholds(s, a, og1, ι, σ), ˆsubst(og0, og1, ι, σ),

not ¬ ˆholds(s, a, og0, ι, σ)

¬ ˆholds(s, a, og0, ι, σ)←
¬ ˆholds(s, a, og1, ι, σ), ˆsubst(og0, og1, ι, σ)

where

s ∈ Es,
a ∈ Ea,

og0, og1 ∈ Eog,

og0 6= og1,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

Transitivity Rules. Like their language L∗ counterparts, these rules ensure that for any

three distinct groups g0, g1 and g2, if g0 is a subset of g1 and g1 is a subset of g2, then g0 is

also a subset of g2.

1. Subject Group Transitivity Rules

∀ (sg0, sg1, sg2, ι, σ),

ˆsubst(sg0, sg2, ι, σ)←
ˆsubst(sg0, sg1, ι, σ), ˆsubst(sg1, sg2, ι, σ)

where

sg0, sg1, sg2 ∈ Esg,

sg0 6= sg1 6= sg2,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

101

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

2. Access Right Group Transitivity Rules

∀ (ag0, ag1, ag2, ι, σ),

ˆsubst(ag0, ag2, ι, σ)←
ˆsubst(ag0, ag1, ι, σ), ˆsubst(ag1, ag2, ι, σ)

where

ag0, ag1, ag2 ∈ Eag,

ag0 6= ag1 6= ag2,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

3. Object Group Transitivity Rules

∀ (og0, og1, og2, ι, σ),

ˆsubst(og0, og2, ι, σ)←
ˆsubst(og0, og1, ι, σ), ˆsubst(og1, og2, ι, σ)

where

og0, og1, og2 ∈ Eog,

og0 6= og1 6= og2,

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

Inertial Rules. The same rules of inertia expressed in language L∗ applies to language

LT ∗
: every fact ρ̂ that holds in state σ must also hold in state Res(u, σ) after policy update

u is applied, provided that update u does not cause the fact ¬ρ̂ to hold.

∀ (α̂,u),

α̂′← α̂, not ¬ α̂′

¬ α̂′←¬ α̂, not α̂′

where

α̂ ∈ Aσ,

u ∈ ψ,

α̂′ = CopyAtom(α̂, Res(u, σ))

102

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Reflexivity Rules. These rules ensure that the reflexive property of sets are preserved:

every set is a subset of itself.

∀ (g, ι, σ),

ˆsubst(g, g, ι, σ)←

where

g ∈ (Esg ∪ Eag ∪ Eog),

ι ∈ I,

S0 ≤ σ ≤ S|ψ|

Temporal Rules. The temporal rules are based on the fact that if a fact ρ̂ holds at interval

ι, then the same fact ρ̂ must also hold at all intervals ι′ where the relation between intervals

ι and ι′ is Equals, During, Starts or Finishes.

1. Holds Temporal Rules

∀(s, a, o, ι0, ι1, σ),

ˆholds(s, a, o, ι1, σ)← ˆholds(s, a, o, ι0, σ)

¬ ˆholds(s, a, o, ι1, σ)←¬ ˆholds(s, a, o, ι0, σ)

where

s ∈ Es,
a ∈ Ea,

0 ∈ Eo,
ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

2. Membership Temporal Rules

∀(ss, sg, ι0, ι1, σ),

ˆmemb(ss, sg, ι1, σ)← ˆmemb(ss, sg, ι0, σ)

¬ ˆmemb(ss, sg, ι1, σ)←¬ ˆmemb(ss, sg, ι0, σ)

103

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

where

ss ∈ Ess,
sg ∈ Esg,

ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

∀(as, ag, ι0, ι1, σ),

ˆmemb(as, ag, ι1, σ)← ˆmemb(as, ag, ι0, σ)

¬ ˆmemb(as, ag, ι1, σ)←¬ ˆmemb(as, ag, ι0, σ)

where

as ∈ Eas,
ag ∈ Eag,

ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

∀(os, og, ι0, ι1, σ),

ˆmemb(os, og, ι1, σ)← ˆmemb(os, og, ι0, σ)

¬ ˆmemb(os, og, ι1, σ)←¬ ˆmemb(os, og, ι0, σ)

where

os ∈ Eos,
og ∈ Eog,

ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

3. Subset Temporal Rules

∀(sg0, sg1, ι0, ι1, σ),

104

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ˆsubst(sg0, sg1, ι1, σ)← ˆsubst(sg0, sg1, ι0, σ)

¬ ˆsubst(sg0, sg1, ι1, σ)←¬ ˆsubst(sg0, sg1, ι0, σ)

where

sg0, sg1 ∈ Esg,

ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

∀(ag0, ag1, ι0, ι1, σ),

ˆsubst(ag0, ag1, ι1, σ)← ˆsubst(ag0, ag1, ι0, σ)

¬ ˆsubst(ag0, ag1, ι1, σ)←¬ ˆsubst(ag0, ag1, ι0, σ)

where

ag0, ag1 ∈ Eag,

ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

∀(og0, og1, ι0, ι1, σ),

ˆsubst(og0, og1, ι1, σ)← ˆsubst(og0, og1, ι0, σ)

¬ ˆsubst(og0, og1, ι1, σ)←¬ ˆsubst(og0, og1, ι0, σ)

where

og0, og1 ∈ Eog,

ι0, ι1 ∈ I,

NET.Get(ι0, ι1) ⊆ {During, Starts, Finishes, Equals},
S0 ≤ σ ≤ S|V |

Example 4.3 The following rules show the language LT ∗
translation of the language LT

code listing shown in Example 4.2.

1. Initial Fact Rules

105

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ˆmemb(alice, grp2, work hours, S0)←
ˆsubst(grp2, grp1, morning hours, S0)←
ˆholds(grp1, read, file, work hours, S0)←

2. Authorisation Constraint Rules

ˆholds(grp1, write, file, work hours, S0)←
ˆholds(grp1, read, file, work hours, S0),

not ¬ ˆholds(grp3, write, file, work hours, S0)

ˆholds(grp1, write, file, work hours, S1)←
ˆholds(grp1, read, file, work hours, S1),

not ¬ ˆholds(grp3, write, file, work hours, S1)

...

ˆholds(grp1, write, file, afternoon hours, S0)←
ˆholds(grp1, read, file, afternoon hours, S0),

not ¬ ˆholds(grp3, write, file, afternoon hours, S0)

ˆholds(grp1, write, file, afternoon hours, S1)←
ˆholds(grp1, read, file, afternoon hours, S1),

not ¬ ˆholds(grp3, write, file, afternoon hours, S1)

3. Policy Update Rules

ˆholds(grp1, read, file, work hours, S1)←
ˆholds(grp1, read, file, morning hours, S1)←
ˆholds(grp1, read, file, afternoon hours, S1)←

4. Inheritance Rules

ˆholds(grp1, read, file, work hours, S0)←
ˆholds(grp2, read, file, work hours, S0),
ˆsubst(grp1, grp2, work hours, S0),

not ¬ ˆholds(grp1, read, file, work hours, S0)

106

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

¬ ˆholds(grp1, read, file, work hours, S0)←
¬ ˆholds(grp2, read, file, work hours, S0),

ˆsubst(grp1, grp2, work hours, S0)

...

ˆholds(grp3, write, file, afternoon hours, S1)←
ˆholds(grp2, write, file, afternoon hours, S1),
ˆsubst(grp3, grp2, afternoon hours, S1),

not ¬ ˆholds(grp3, write, file, afternoon hours, S1)

¬ ˆholds(grp3, write, file, afternoon hours, S1)←
¬ ˆholds(grp2, write, file, afternoon hours, S1),

ˆsubst(grp3, grp2, afternoon hours, S1)

ˆholds(alice, read, file, work hours, S0)←
ˆholds(grp1, read, file, work hours, S0),
ˆmemb(alice, grp1, work hours, S0),

not ¬ ˆholds(alice, read, file, work hours, S0)

¬ ˆholds(alice, read, file, work hours, S0)←
¬ ˆholds(grp1, read, file, work hours, S0),

ˆmemb(alice, grp1, work hours, S0)

...

ˆholds(alice, write, file, afternoon hours, S1)←
ˆholds(grp3, write, file, afternoon hours, S1),
ˆmemb(alice, grp3, afternoon hours, S1),

not ¬ ˆholds(alice, write, file, afternoon hours, S1)

¬ ˆholds(alice, write, file, afternoon hours, S1)←
¬ ˆholds(grp3, write, file, afternoon hours, S1),

ˆmemb(alice, grp3, afternoon hours, S1)

5. Transitivity Rules

107

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ˆsubst(grp1, grp3, work hours, S0)←
ˆsubst(grp1, grp2, work hours, S0),
ˆsubst(grp2, grp3, work hours, S0)

...

ˆsubst(grp3, grp1, afternoon hours, S1)←
ˆsubst(grp3, grp2, afternoon hours, S1),
ˆsubst(grp2, grp1, afternoon hours, S1)

6. Inertial Rules

ˆholds(alice, read, file, work hours, S1)←
ˆholds(alice, read, file, work hours, S0),

not ¬ ˆholds(alice, read, file, work hours, S1)

...

ˆholds(grp3, write, file, afternoon hours, S1)←
ˆholds(grp3, write, file, afternoon hours, S0),

not ¬ ˆholds(grp3, write, file, afternoon hours, S1)

ˆmemb(alice, grp1, work hours, S1)←
ˆmemb(alice, grp1, work hours, S0),

not ¬ ˆmemb(alice, grp1, work hours, S1)

...

ˆmemb(alice, grp3, afternoon hours, S1)←
ˆmemb(alice, grp3, afternoon hours, S0),

not ¬ ˆmemb(alice, grp3, afternoon hours, S1)

ˆsubst(grp1, grp1, work hours, S1)←
ˆsubst(grp1, grp1, work hours, S0),

not ¬ ˆsubst(grp1, grp1, work hours, S1)

...

108

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

ˆsubst(grp3, grp3, afternoon hours, S1)←
ˆsubst(grp3, grp3, afternoon hours, S0),

not ¬ ˆsubst(grp3, grp3, afternoon hours, S1)

7. Reflexivity Rules

ˆsubst(grp1, grp1, work hours, S0)←

...

ˆsubst(grp3, grp3, afternoon hours, S1)←

8. Temporal Rules

ˆholds(alice, read, file, morning hours, S0)←
ˆholds(alice, read, file, work hours, S0),

¬ ˆholds(alice, read, file, morning hours, S0)←
¬ ˆholds(alice, read, file, work hours, S0),

...

ˆholds(grp3, write, file, afternoon hours, S1)←
ˆholds(grp3, write, file, work hours, S1),

¬ ˆholds(grp3, write, file, afternoon hours, S1)←
¬ ˆholds(grp3, write, file, work hours, S1),

ˆmemb(alice, grp1, morning hours, S0)←
ˆmemb(alice, grp1, work hours, S0),

¬ ˆmemb(alice, grp1, morning hours, S0)←
¬ ˆmemb(alice, grp1, work hours, S0),

...

ˆmemb(alice, grp3, afternoon hours, S1)←
ˆmemb(alice, grp3, work hours, S1),

109

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

¬ ˆmemb(alice, grp3, afternoon hours, S1)←
¬ ˆmemb(alice, grp3, work hours, S1),

ˆsubst(grp1, grp2, morning hours, S0)←
ˆsubst(grp1, grp2, work hours, S0),

¬ ˆsubst(grp1, grp2, morning hours, S0)←
¬ ˆsubst(grp1, grp2, work hours, S0),

...

ˆsubst(grp3, grp2, afternoon hours, S1)←
ˆsubst(grp3, grp2, work hours, S1),

¬ ˆsubst(grp3, grp2, afternoonhours, S1)←
¬ ˆsubst(grp3, grp2, work hours, S1),

4.5 Discussions

The previous section has shown how a language LT program can be translated into a ex-

tended logic program language LT ∗
. Since language LT ∗

is semantically similar to lan-

guage L∗, the same methods shown in Section 2.2.3 is used to translate language LT ∗
into

a normal logic program for query evaluation. However, one outstanding issue remains for

language LT : domain consistency.

A language LT domain description DLT without any variable occurrences (and there-

fore without any where clauses) may be represented as the following statements:

initially ρ00, . . ., ρ0n0
, !ρ10, . . ., !ρ1n1

;

relation r00, . . ., r0m;

always ρ20, . . ., ρ2n2
, !ρ30, . . ., !ρ3n3

implied by ρ40, . . ., ρ4n4
, !ρ50, . . ., !ρ5n5

with absence ρ60, . . ., ρ6n6
, !ρ70, . . ., !ρ7n7

;

update u()

causes ρ80, . . ., ρ8n8
, !ρ90, . . ., !ρ9n9

if ρ100, . . ., ρ10n10
, !ρ110, . . ., !ρ11n11

;

110

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

Note that if we disregard the relation statement and the fact that language LT atoms

also specify time intervals, language LT statements consisting only of ground expressions

as above are identical to the language L statements shown in Section 2.3. As a consequence,

Theorem 2.2 can be used to define DLT consistency:

Definition 4.4 A domain description DLT is consistent if:

1. DLT is normal, using the same language L definition in Definition 2.7; and

2. The temporal interval relations defined in DLT produces a consistent interval net-
work.

Assuming that we already have a normal domain description, we focus on the second

condition. Below, we define network consistency:

Definition 4.5 Given a temporal interval network N , with nodes n0, . . . nn and arcs a0,

. . ., am. An instance of interval network N is a subnetwork with nodes n0, . . ., nn, with

each arc a′i representing a single relation from the corresponding arc inN (a′i ∈ ai, 0≤ i≤
m). A consistent instance of interval networkN is an instance ofN such that for any three

nodes, the three relations represented by these nodes satisfy the transitivity rules shown in

Table 4.1. A consistent interval network is a network with at least one consistent instance.

Any given language LT domain description can fail to satisfy Condition 2 in Definition

4.4 above in different ways. In fact, Valdez-Perez [60] generalised these conditions where

an interval network is inconsistent1. One such condition arises in language LT when

two or more conflicting interval constraint statements exist. This conflict occurs when the

consequence of an interval constraint is implicitly or explicitly excluded by another interval

constraint. For example, the following two interval constraint statements are in conflict

with each other because the second defines a relation that has been explicitly excluded by

the first.

relation during(i0, i1), before(i0, i1);

relation equals(i0, i1);

Note that this type of domain inconsistency is detected by the NET.AddRel() algo-

rithm. Unfortunately, the second type of inconsistency is not. To illustrate this type of

inconsistency, we use Allen’s example in [2], shown in Figure 4.8.

The network shown in Figure 4.8 is in fact inconsistent, as none of its 32 instances are

consistent. To see this, we note that although the NET.AddRel() algorithm accepts the
1Valdez-Perez uses the term unsatisfiable.

111

CHAPTER 4. TEMPORAL CONSTRAINTS IN AUTHORISATION POLICIES

STA
MET

STA
MET

DUR
DUI

DUR
DUI

FII
FIN

ι 0

ι 1 ι 2

ι 3

OVR

Figure 4.8: Inconsistent Network

relation shown between the arcs i1 and i2, we cannot assign the relation finishes or finished

by alone.

In fact, as Allen points out in [2], the NET.AddRel() algorithm can only guarantee

consistency within any three nodes of the network (3-consistency). Unfortunately, Vi-

lain et al. [63] points out that algorithms that can ensure full network consistency, i.e.

k-consistency [26], are in fact, intractable. Nevertheless, total consistency can be easily

checked by employing a simple backtracking algorithm. Furthermore, several methods for

full network consistency checking, like those in [36, 62] already exist. In this work, we

make the assumption that 3-consistency is sufficient for our authorisation system as we

have observed that this covers all scenarios that we have examined.

In this chapter, we have introduced an algebra for expressing time interval relations

and an authorisation language that employs this algebra to express temporal constraints. In

the next chapter, we shall describe in detail the implementation of an authorisation system

whose policies are expressed in this language.

112

Chapter 5

Implementation Issues

This chapter focuses on two issues: (1) the implementation of PolicyUpdater version 2,

which includes support for temporal constraints; and (2) an in-depth discussion of imple-

mentation issues not previously covered in the other chapters.

The source code and other technical information of all the versions of the PolicyUpdater

core system, Vlad, is available in the project website:

http://www.scm.uws.edu.au/˜jcrescin/projects/policyupdater/index.html

The PolicyUpdater software package makes use of a temporal reasoner engine to eval-

uate temporal interval relations under the rules of the interval algebra discussed in Chapter

4. The source code and other implementation details of a full library implementation of the

temporal reasoner engine, Tribe, can be found in the following website:

http://www.scm.uws.edu.au/˜jcrescin/projects/tribe/index.html

5.1 System Structure

Figure 5.1 shows the internal processes of the system. The overall process of the system is

similar to that of the previous version:

An access control policy, written in language LT syntax, is translated into a normal

logic program, which in turn is fed to SModels to generate answer sets. From these answer

sets, the system can evaluate authorisation queries.

What makes PolicyUpdater 2 different from its predecessor is that it uses a temporal

reasoner to generate a normal logic program. The system gathers all temporal intervals and

relations from the policy and makes use of the temporal reasoner to derive new interval

relations not explicitly stated in the policy.

113

CHAPTER 5. IMPLEMENTATION ISSUES

Policy
Temporal

Reasoner

Policy

Base

Update

Table

Grounding

Variable

Symbol

Table

Translation

NLP

SModels

Agent

Temporal
Ground

Rules

Authorisation
Rules

Ground

Update
Rules

Ground

Identifiers
Entity

Interval Identifiers

Temporal Constraints

Clause
Where

Query Reply

Query Request

Update Request

Figure 5.1: System Flowchart

Another difference is the variable grounding process. With PolicyUpdater 1, variables

are resolved just before they are stored in the policy base. This is possible because in

PolicyUpdater 1, the only variables that occur in the policy are resolved to all entities defined

that are of the same type. However, in PolicyUpdater 2, the intervals used to ground interval

variables are subject to some restrictions defined by where clauses in policy statements. As

a result, the variable grounding process of PolicyUpdater 2 needs some interaction with the

temporal reasoner engine.

The internal mechanisms of both the temporal reasoner engine and the policy base en-

gine shall be discussed in detail in the following sections. However, before we do so, we

first formalise a list structure first introduced in Section 3.1.2 as the implementation of both

engines makes use of this structure.

Definition 5.1 A list object LIST is defined as a linked-list implementation with the fol-

lowing operators:

1. LIST .Init() initialises or re-initialises LIST . Any items in the list is removed after

this operator is called.

2. LIST .Length() returns the number of items stored in LIST . The shorthand nota-

tion |LIST | is equivalent to LIST .Length().

3. LIST .Find(item) returns true if item is stored in LIST , false otherwise.

4. LIST .Index(item) returns the ordinal index of item with respect to LIST .

114

CHAPTER 5. IMPLEMENTATION ISSUES

5. LIST .Add(item) attaches item to the end of LIST .

6. LIST .Del(index) removes the index’th item from LIST .

7. LIST .Get(index) returns the index’th item in LIST . The shorthand notation

LIST [index] is equivalent to LIST .Get(index).

8. LIST .Append(list) attaches the items in list at the end of LIST .

5.2 Temporal Reasoner

The primary purpose of the temporal reasoner engine is to maintain a complete network of

temporal intervals and their relations to each other, as discussed in Chapter 4, such that: (1)

the effects of adding a new relation are propagated to the entire network; and (2) the relation

between any two intervals can be looked up at any given time. This section focuses on the

methods used in the implementation of this reasoner engine.

5.2.1 Network Structure

Conceptually, a temporal interval relation network may be represented as a table whose

rows and columns both represent all the intervals in the network. As shown in Table 5.1,

all the possible relations that exist between intervals ιi and ιj , as stored in the network, are

contained in the relation set RSij from cell (i, j).

ι0 ι1 . . . ιn
ι0 RS00 RS01 RS0n

ι1 RS10 RS11 RS1n
...

...
ιn RSn0 RSn1 . . . RSnn

Table 5.1: Conceptual Representation of an Interval Network

As we shall see, using this representation as a basis for implementation is not a good

idea, as it contains redundant information and will incur a high maintenance overhead. First,

we note that due to the reflexive property of intervals, all the cells in the diagonal of this

representation is defined as follows:

∀ i,

RSii = EQL

where

115

CHAPTER 5. IMPLEMENTATION ISSUES

0 ≤ i ≤ n

As the reflexive property applies to all intervals, there is no need to store such relations

in the network. Another instance of redundancy in this representation is made evident by

the following property:

∀ (i, j),

RSij = RS−1
ji

where

0 ≤ i ≤ n

0 ≤ j ≤ n

RS−1 is the inverse set of RS

The property above states that a relation set between two intervals ι0 and ι1 can be

derived by calculating the inverse of the relation set between ι1 and ι0. As a consequence,

only one relation set between any two intervals needs to be stored as its inverse can be

calculated from this relation set if required. Note that due to this property, half of the cells

in Table 5.1 are redundant. The information stored above the diagonal is the inverse of those

stored below.

Binary Representation of Relation Sets

Obviously, relation sets can be conceptually represented as a list of relations. However,

from an implementation point of view, maintaining a list of relations for every relation set

can incur a lot of overhead as the cost of adding and removing relations from such a list

can be computationally expensive. To avoid this problem, we employ a more efficient way

of representing these sets in our implementation. Each relation set is represented as a bit

vector1.

To illustrate this representation, we first assign a base-2 value for each basic relation

as shown in Table 5.2. With these value assignments, any relation set composed of any

combination of these basic relations can be represented as an integer which is the sum of

the relations that it contains. For example, under this system the relation set {BEF , DUR,

STA, STI} can be represented as 2086.

Implemented as a bit vector, three important relation set operators can be easily defined

by using bitwise operators:
1A similar method is used in [62, 63].

116

CHAPTER 5. IMPLEMENTATION ISSUES

Relation Symbol Value Bit Value
Equals EQL 1 0
Before BEF 2 1
During DUR 4 2

Overlaps OVR 8 3
Meets MET 16 4
Starts STA 32 5

Finishes FIN 64 6
After BEI 128 7

Contains DUI 256 8
Overlapped By OVI 512 9

Met By MEI 1024 10
Started By STI 2048 11

Finished By FII 4096 12

Table 5.2: Temporal Relation Value Assignment

• The Union between two relation sets is calculated by performing a bitwise and oper-

ation between the two sets.

RS0 ∪ RS1 = RS0 | RS1

• The Intersection between two relation sets is simply the opposite of the union opera-

tion: a bitwise or operation between the two sets.

RS0 ∩ RS1 = RS0 & RS1

• The Inverse of a relation set can be calculated by replacing each relation bit, as defined

by Table 5.2, by its inverse relation bit. This is achieved by a series of bit masking

and shifting operations:

RS−1 = ((RS & 8064) >> 6) | ((RS & 126) << 6) | (RS & 1)

Network Data Structure

The temporal interval network is implemented as a list of all intervals, each with a relation

list where information about its relation with other intervals are stored (see Figure 5.2).

Table 5.3 shows the structure of each node in the network list, while Table 5.4 shows the

structure of each relation list node in each network list node.

For example, the network shown in Figure 5.3 contains only the relations before(ι0, ι1)

and during(ι0, ι1). This network, NET , is stored in the following manner:

117

CHAPTER 5. IMPLEMENTATION ISSUES

ι0

ι 0 RelList

ι1

ι RelList1

ι2

ι RelList2

ιn

ι RelListn

ι 1

RelSet

ι 2

RelSet

ι n

RelSet

ι 2

RelSet

ι n

RelSet

ι n

RelSet

Figure 5.2: Network Structure as a List of Relation Lists

Field Type Description
int String Interval ID
ep0 Integer Starting End Point
ep1 Integer Finishing End Point
rlist RelList Relation List

Table 5.3: Network Node Data Structure

Field Type Description
int String Interval ID
rs Integer Relation Set

Table 5.4: Relation List Node Data Structure

118

CHAPTER 5. IMPLEMENTATION ISSUES

NET [0].int = ι0

NET [0].rlist[0].int = ι1

NET [0].rlist[0].rs = 6

NET [1].int = ι1

NET [1].rlist = ∅

ι0

ι 0 RelList

ι1

ι RelList1

ι 1

BEF|DUR

Figure 5.3: Network Structure Containing before(ι0, ι1) and during(ι0, ι1)

Note that in the previous example, the relations between intervals ι0 and ι1 are stored

in the relation list of interval ι0, but the inverse relations, those between intervals ι1 and ι0,

are not stored in the relation list of ι1. This is done for efficiency, as inverse relations can

be calculated by the inverse operator for any stored relations.

However, this method raises the question of how we decide which interval node is used

to store a given relation. In the previous example, we arbitrarily chose to store the relation

in interval ι0’s relation list, however, as shown in Figure 5.4, we could just as easily have

chosen to store the relation in interval ι1’s relation list:

NET [0].int = ι0

NET [0].rlist = ∅

NET [1].int = ι1

NET [1].rlist[0].int = ι0

NET [1].rlist[0].rs = 384

To resolve this issue, we adopt a simple rule to determine where a given relation is to

be stored in the network. Given a pair of intervals ι0 and ι1, and a relation set rs, this

relation is stored in the node whose interval ID occurs first when sorted alphabetically. For

example, if ι0 is morning and ι1 is evening, then the relation rs would be stored in the

node containing ι1, since evening is alphabetically before morning. To enforce this rule,

we use the function shown in Algorithm 5.1 before adding a relation to the network.

119

CHAPTER 5. IMPLEMENTATION ISSUES

ι0

ι 0 RelList

ι1

ι RelList1

ι 0

BEI|DUI

Figure 5.4: Equivalent Representation of before(ι0, ι1) and during(ι0, ι1)

Algorithm 5.1 NormaliseRel()

FUNCTION NormaliseRel(ι0, ι1, rs)

IF ι0 ≤ ι1 THEN

RETURN (ι0, ι1, rs)

ELSE

RETURN (ι1, ι0, rs−1)

ENDIF

ENDFUNCTION

Another issue to be considered arises from the network’s completeness property from

Definition 4.1, i.e. every node in the network must be connected to every other node. As

mentioned in Section 4.2.3, this property is maintained even between nodes containing in-

tervals with no defined relations by assigning the default arc, which represents a relation set

containing all 13 relations. Now, considering that the network is implemented as a list of

intervals, each with its own list of relations with other intervals, it is easy to see that storing

these default relations will incur a lot of overhead. When a new interval is added to the

network, a relation list containing all the other intervals must also be added, and each node

in this relation list contains the default relation.

Figure 5.5 shows how such implementation might represent a network with 3 intervals

and the relations starts or finishes between intervals ι0 and ι1. Note that although only

the relation between intervals ι0 and ι1 is given, the default relation is still stored between

intervals ι0 and ι2 and between intervals ι1 and ι2.

This issue is easily resolved by simply not storing default relations. In other words,

an interval that is not in the relation list of another interval is assumed to have the default

relation with that interval. By adopting this technique, we can be certain that the network

implementation will only store the minimum information required, and yet the relations

between any two intervals can be derived. Figure 5.6 shows how the network in the above

example is stored by using this method.

120

CHAPTER 5. IMPLEMENTATION ISSUES

ι0

ι 0 RelList

ι1

ι RelList1

ι2

ι RelList2

ι 1

STA|FIN

ι 2

ALL

ι 2

ALL

Figure 5.5: Network Structure with Default Relations Stored

ι0

ι 0 RelList

ι1

ι RelList1

ι2

ι RelList2

ι 1

STA|FIN

Figure 5.6: Network Structure with Default Relations Omitted

5.2.2 Network Operators

The following defines the full operator set allowed for the interval network. This definition

supersedes the basic operators shown in Definition 4.2.

Definition 5.2 A temporal interval relation network NET implements the following oper-

ators:

1. The NET.Init() operator initialises or re-initialises the network.

2. The NET.AddInt(ι) operator causes the given interval identifier ι to be added to

the network.

3. The NET .AddRel(ι0, ι1, rs) operator adds the relation set rs to the network as the

set of possible relations between intervals ι0 and ι1, and propagates the effects of this

relation to the entire network.

4. The NET .Bind(ι, ep0, ep1) operator registers the points ep0 and ep1 as the end

points of interval ι, then calculates the relation of this interval with other intervals

based on their end points.

5. The NET .Get(ι0, ι1) operator returns the relation set between the intervals ι0 and

ι1.

121

CHAPTER 5. IMPLEMENTATION ISSUES

We note that the network operators described in Definition 5.2 do not include the op-

erator NET.Replace(). This is due to the fact that this is an internal operator used only

by the operator NET.AddRel(). Nevertheless, the details of how this operator replaces

the network relation between the two given intervals by the given relation set is shown in

Algorithm 5.2.

Algorithm 5.2 NET.Replace()

FUNCTION NET.Replace(ι0, ι1, rs)

(ι′0, ι′1, rs) = NormaliseRel(ι0, ι1, rs)

index0 = NET.Index(ι′0)

IF NET[index0].rlist.Find(ι′1) THEN

index1 = NET[index0].rlist.Index(ι′1)

NET[index0].rlist[index1].rs = rs′

ELSE

rlnode.int = ι′1
rlnode.rs = rs′

NET[index0].rlist.Add(rlnode)

ENDIF

ENDFUNCTION

The NET .Init() operator is a simple routine that initialises the network when called

for the first time, and otherwise deletes all the nodes in the network, including all relation

list nodes within these network nodes.

The NET .AddInt(ι) operator is shown in Algorithm 5.3. It works by firstly check-

ing whether a network node with the interval ι is already defined. If not, a new network

node is allocated and appended to the end of the network list. Since the NET structure is

implemented as a list, the LIST .Add() can be used to add nodes.

Algorithm 5.3 NET.AddInt()

FUNCTION NET.AddInt(ι)

IF ι is not in NET THEN

nnode.int = ι

nnode.rlist = ∅
NET.Add(nnode)

ENDIF

ENDFUNCTION

The NET .AddRel() operator shown in Algorithm 4.2 illustrates the relation propaga-

tion algorithm based solely on Allen’s ToAdd() function in [2]. Algorithm 5.4 shows a

simplified algorithm without the using a queue structure. This is made possible by the fact

122

CHAPTER 5. IMPLEMENTATION ISSUES

that the order in which relations are propagated makes no difference in the resulting network

[43, 61]. While the algorithm that uses a queue structure performs breadth-first propagation,

the recursive algorithm below performs depth-first propagation.

Algorithm 5.4 NET.AddRel()

FUNCTION NET.AddRel(ι0, ι1, rs)

IF rs ⊂ NET.Get(ι0, ι1) THEN

NET.Replace(ι0, ι1, rs)

FOR each interval ι′ ∈ NET DO

IF ι′ != ι0 AND ι′ != ι1 THEN

rs′ = NET.Get(ι′, ι0)

IF NOT Skip(rs′, rs) THEN

NET.AddRel(ι′, ι1, NET.Get(ι′, ι1) ∩ Trans2(rs′, rs))

ENDIF

ENDIF

ENDDO

FOR each interval ι′ ∈ NET DO

IF ι′ != ι0 AND ι′ != ι1 THEN

rs′ = NET.Get(ι1, ι′)

IF NOT Skip(rs, rs′) THEN

NET.AddRel(ι0, ι′, NET.Get(ι0, ι′) ∩ Trans2(rs, rs′))

ENDIF

ENDIF

ENDDO

ENDIF

ENDFUNCTION

Algorithm 5.4 also takes advantage of Van Beek and Manchak’s observation that certain

relation set combinations will not yield new information [62]. These combinations are

summarised in the Skip() function shown in Algorithm 5.5.

Algorithm 5.5 Skip()

FUNCTION Skip(rs0, rs1)

IF (rs0 == {ALL}) OR

(rs1 == {ALL}) OR

(BEF ∈ rs0 AND BEI ∈ rs1) OR

(BEI ∈ rs0 AND BEF ∈ rs1) OR

(DUR ∈ rs0 AND DUI ∈ rs1) THEN

RETURN TRUE

ENDIF

RETURN FALSE

123

CHAPTER 5. IMPLEMENTATION ISSUES

ENDFUNCTION

Finally, as the details of the NET .Bind() operator is already shown in Algorithm 4.4,

we show the NET .Get() operator in Algorithm 5.6.

Algorithm 5.6 NET.Get()

FUNCTION NET.Get(ι0, ι1)

IF ι0 ≤ ι1 THEN

index = NET.Index(ι0)

IF NET[index].rlist.Find(ι1) THEN

RETURN NET[index].rlist[NET[index].rlist.Index(ι1)].rs

ELSE

RETURN ALL

ENDIF

ELSE

index = NET.Index(ι1)

IF NET[index].rlist.Find(ι0) THEN

RETURN NET[index].rlist[NET[index].rlist.Index(ι0)].rs−1

ELSE

RETURN ALL

ENDIF

ENDIF

ENDFUNCTION

5.3 Policy Base Engine

The focus of this section is the internal mechanisms of the policy base and other implemen-

tation issues. In essence, the policy base is the core authorisation engine of the PolicyUp-

dater system. While Chapter 3 gave a general overview of the system data structures and

processes, here we shall attempt to provide a more detailed formalisation of these internal

mechanisms, and to show how the policy base makes use of the temporal reasoner engine.

5.3.1 Data Structures

The policy base is composed of different data structures on which its operators are per-

formed. Table 5.5 summarises these structures. These structures are used by the policy base

to store the different components of the policy prior to the normal logic program translation.

Note that because of the similarities of PolicyUpdater version 1 and version 2, some of the

more fundamental structures have already been defined in Section 3.1.2.

124

CHAPTER 5. IMPLEMENTATION ISSUES

Field Type Description
symtab Symbol Table List of Entity and Interval Identifiers
inittab Expression List of Initial Facts
consttab Constraints Table List of Constraints
updatetab Update Declaration Table List of Policy Update Declarations
seqtab Update Sequence Table List of Policy Update Declarations
netwk Relation Network Interval Relation Network

Table 5.5: Policy Base Structure

The symbol table PB.symtab, whose structure is shown in Table 5.6, is used by the

policy base to store identifiers. The main difference of this symbol table to that of version 1

(shown in Table 3.1) is that it also stores interval identifiers. However, the general structure

remains the same: each field is a list containing all defined entities and intervals of a specific

type.

Field Type Description
ss String List Single Subject
sg String List Group Subject
as String List Single Access Right
ag String List Group Access Right
os String List Single Object
og String List Group Object
s String List ss + sg

a String List as + ag

o String List os + og

int String List Interval

Table 5.6: Extended Symbol Table

The initial facts table PB.inittab is a list of all facts declared in the language LT

initially statement. Recall from Section 3.1.2 that the fact structure is composed of an atom,

a type specifier type ∈ {h, m, s} and a truth indicator truth ∈ {true, false}. Table 5.7

shows the data structure used to store atoms. Note that the atom structure is extended to

include interval identifiers for each atom type.

The constraints table PB.consttab is used to store authorisation constraints. The table

is implemented as a list where each item is composed of the following fields: three authori-

sation expressions (the consequent, and the positive and negative premises) and an interval

relation expression. Table 5.8 shows the structure of each node of this list.

The interval relation list used by the constraints table is a list whose nodes are composed

125

CHAPTER 5. IMPLEMENTATION ISSUES

Atom Field Type Description

holds
sub String Subject Entity
acc String Access Right Entity
obj String Object Entity
int String Interval

member

elt String Single Entity
grp String Group Entity
int String Interval
type {sub|acc|obj} Type Specifier

subset

grp0 String Subgroup Entity
grp1 String Supergroup Entity
int String Interval
type {sub|acc|obj} Type Specifier

Table 5.7: Extended Atom Data Structure

Field Type Description
exp Expression Type Consequent
pcn Expression Type Positive Premise
ncn Expression Type Negative Premise
rexp Interval Relation List where Clause

Table 5.8: Constraints Table Node

126

CHAPTER 5. IMPLEMENTATION ISSUES

of two intervals and a relation set. The details of this structure is shown in Table 5.9.

Field Type Description
int0 String Interval
int1 String Interval
rs Integer Relation Set

Table 5.9: Interval Relation List Node

The structure of each field in the policy update declarations table PB.updatetab is

shown in Table 5.10. This table is used by the policy base to store all policy update decla-

rations. The policy update sequence table PB.seqtab is a list whose node structure is the

same as those already shown in Table 3.6.

Field Type Description
name String Update Identifier
vlist Ordered String List Variables
pre Expression Type Precondition
pst Expression Type Postcondition
rexp Interval Relation List where Clause

Table 5.10: Policy Update Declarations Table Node

Lastly, the relation network field PB.netwk is an instance of the interval relation net-

work object described in Definition 5.2.

5.3.2 Encoding Atoms

Recall that the Encode() function first introduced in Section 3.2.3 takes as input an atom α,

a state σ and a boolean term τ to indicate whether the fact is classically negated or not, and

returns a positive integer i unique to these parameters:

i = Encode(α, σ, τ)

For example, given the fact holds(alice, exec, file, today) which holds at state S0 may

be assigned the integer 0 by the Encode function. Similarly, the negation of the fact may

be assigned the integer 1, and so on:

0 = Encode(holds(alice, exec, file, today), S0, true)

1 = Encode(holds(alice, exec, file, today), S0, false)

2 = Encode(holds(alice, exec, file, today), S1, true)

127

CHAPTER 5. IMPLEMENTATION ISSUES

3 = Encode(holds(alice, exec, file, today), S1, false)

Obviously, a consistent mapping between these integers and these facts are needed,

and a systematic representation of facts is required to achieve and maintain this consistent

mapping. Table 5.11 shows a conceptual systematic arrangement of facts using the symbol

table θ shown in Table 5.6.

Entity 1 Entity 2 Entity 3 Interval

H
ol

ds θ.s[0] θ.a[0] θ.o[0] θ.int[0]
...

...
...

...
θ.s[|θ.s|-1] θ.a[|θ.a|-1] θ.o[|θ.o|-1] θ.int[|θ.int|-1]

Su
b

M
em

be
r

θ.ss[0] θ.sg[0] θ.int[0]
...

...
...

θ.ss[|θ.ss|-1] θ.sg[|θ.sg|-1] θ.int[|θ.int|-1]

A
cc

θ.as[0] θ.ag[0] θ.int[0]
...

...
...

θ.as[|θ.as|-1] θ.ag[|θ.ag|-1] θ.int[|θ.int|-1]

O
bj

θ.os[0] θ.og[0] θ.int[0]
...

...
...

θ.os[|θ.os|-1] θ.og[|θ.og|-1] θ.int[|θ.int|-1]

Su
b

Su
bs

et

θ.sg[0] θ.sg[0] θ.int[0]
...

...
...

θ.sg[|θ.sg|-1] θ.sg[|θ.sg|-1] θ.int[|θ.int|-1]

A
cc

θ.ag[0] θ.ag[0] θ.int[0]
...

...
...

θ.ag[|θ.ag|-1] θ.ag[|θ.ag|-1] θ.int[|θ.int|-1]

O
bj

θ.og[0] θ.og[0] θ.int[0]
...

...
...

θ.og[|θ.og|-1] θ.og[|θ.og|-1] θ.int[|θ.int|-1]

Table 5.11: Conceptual Arrangement of Facts

Table 5.11 shows all the possible combinations of all entity and interval identifiers de-

fined in the symbol table to form all possible facts in one state. Note that the order in which

the facts are enumerated may be used as an index for each fact. For example, using the

last single access right θ.as[|θ.as|-1], the last group access right θ.ag[|θ.ag|-1] and the last

interval θ.int[|θ.int|-1] from the symbol table, we form the following fact:

memb(θ.as[|θ.as|-1], θ.ag[|θ.ag|-1], θ.int[|θ.int|-1])

128

CHAPTER 5. IMPLEMENTATION ISSUES

The index of the fact above can be derived by considering the enumerated order of this fact

from Table 5.11, and the fixed order of the symbol table θ:

(|θ.s| × |θ.a| × |θ.o| × |θ.int|) +

(|θ.ss| × |θ.sg| × |θ.int|) +

(|θ.as| × |θ.ag| × |θ.int|) − 1

Note that in Table 5.11, the indices of positive member facts are offset by the total

number of positive holds facts (|θ.s| × |θ.a| × |θ.o| × |θ.int|) and the indices of positive

access right member facts are offset by the total number of positive holds facts plus the total

number of positive subject member facts (|θ.s| × |θ.a| × |θ.o| × |θ.int| + |θ.ss| × |θ.sg|
× |θ.int|). For notational simplicity, we define the following totals of atoms:

TotA = TotH + TotM + TotS

TotH = |θ.s| × |θ.a| × |θ.o| × |θ.int|

TotM =

(|θ.ss| × |θ.sg| × |θ.int|) +

(|θ.as| × |θ.ag| × |θ.int|) +

(|θ.os| × |θ.og| × |θ.int|)

TotS =

(|θ.sg| × |θ.sg| × |θ.int|) +

(|θ.ag| × |θ.ag| × |θ.int|) +

(|θ.og| × |θ.og| × |θ.int|)

With the totals above defined, the offsetting procedure can be extended to find the in-

dices of both positive and negative facts. The index of a negative fact is offset by TotA, the

total number of positive facts. For example, given the first negative subject subset fact:

¬subst(θ.sg[0], θ.sg[0], θ.int[0])

The index of the above fact is:

TotA + TotH + TotM

129

CHAPTER 5. IMPLEMENTATION ISSUES

So far, we have seen that this technique is effective in encoding positive and negative

facts in one state only. However, this procedure can be further extended to assign indices

to facts in different states. First, we assume that the integers 0 to (2 × TotA) - 1 maps to

positive and negative facts of state S0. We can then assign integers (2 × TotA) to (4 ×
TotA) - 1 to the positive and negative facts of state S1. In general, facts of state σ are offset

by the facts of state σ - 1.

Algorithm 5.7 shows the implementation of theEncode() function using this technique.

The first thing the that the function does is to calculate the offset of the atom α based on

the given state σ and the truth indicator τ . The function then takes the ordinal index of each

entity and interval in the atom from the symbol table θ. Depending on the atom type, the

Encode() then uses one of Offset Holds(), Offset Memb() or Offset Subst() with

the indices to calculate the appropriate offsets.

Algorithm 5.7 Encode()

FUNCTION Encode(α, σ, τ)

offset = σ · TotA · 2
IF τ == false THEN

offset = offset + TotA

ENDIF

CASE α.type OF

holds :

s = θs.index of(α.holds.sub)

a = θa.index of(α.holds.acc)

o = θo.index of(α.holds.obj)

i = θint.index of(α.holds.int)

RETURN offset + Offset Holds(s, a, o, i)

member :

CASE α.memb.type OF

sub :

e = θss.index of(α.memb.elt)

g = θsg.index of(α.memb.grp)

acc :

e = θas.index of(α.memb.elt)

g = θag.index of(α.memb.grp)

obj :

e = θos.index of(α.memb.elt)

g = θog.index of(α.memb.grp)

ENDCASE

i = θint.index of(α.memb.int)

RETURN offset + Offset Memb(e, g, i, α.memb.type)

130

CHAPTER 5. IMPLEMENTATION ISSUES

subset :

CASE α.subst.type OF

sub :

g0 = θsg.index of(α.subst.grp0)

g1 = θsg.index of(α.subst.grp1)

acc :

g0 = θag.index of(α.subst.grp0)

g1 = θag.index of(α.subst.grp1)

obj :

g0 = θag.index of(α.subst.grp0)

g1 = θag.index of(α.subst.grp1)

ENDCASE

i = θint.index of(α.subst.int)

RETURN offset + Offset Subst(g0, g1, i, α.subst.type)

ENDCASE

ENDFUNCTION

The Offset Holds() function shown in Algorithm 5.8 calculates the offset for atoms

of type holds by using the given indices of its elements. As discussed above, the subject

offset of a holds atom is obtained by multiplying the actual subject index sub by the total

number of access rights by the total number of objects by the total number of intervals

defined in the symbol table. Similarly, the access right offset is calculated by multiplying

the actual access right index acc by the remaining elements: the total number of objects and

the total number of intervals. The offsets for objects and intervals are calculated in the same

manner. Finally, the sum of these offsets is the offset for the holds atom, which is returned

by this function.

Algorithm 5.8 Offset Holds()

FUNCTION Offset Holds(sub, acc, obj, int)

RETURN

(sub · (|θ.as| + |θ.ag|) · (|θ.os| + |θ.og|) · |θ.int|) +
(acc · (|θ.os| + |θ.og|) · |θ.int|) +
(obj · |θ.int|) +
int

ENDFUNCTION

The calculation of the offset for member atoms as shown in Algorithm 5.9 uses a similar

method, except each type (subject, access right and object) is handled in a different way.

Firstly, the access right index is offset by the total number of subject member atoms (|θ.ss|
· |θ.sg| · |θ.int). The index for member atoms of type object are similarly offset by the total

131

CHAPTER 5. IMPLEMENTATION ISSUES

number of subject and access right member atoms (|θ.ss| · |θ.sg| · |θ.int| + |θ.as| · |θ.ag| ·
|θ.int). Furthermore, the index of all atoms of type member is offset by the total number of

holds atoms (TotH).

Algorithm 5.9 Offset Memb()

FUNCTION Offset Memb(elt, grp, int, type)

CASE type OF

sub :

offset =

(elt · |θ.sg| · |θ.int|) +
(grp · |θ.int|) +
int

acc :

offset =

(|θ.ss| · |θ.sg| · |θ.int|) +
(elt · |θ.ag| · |θ.int|) +
(grp · |θ.int|) +
int

obj :

offset =

(|θ.ss| · |θ.sg| · |θ.int|) +
(|θ.as| · |θ.ag| · |θ.int|) +
(elt · |θ.og| · |θ.int|) +
(grp · |θ.int|) +
int

ENDCASE

RETURN TotH + offset

ENDFUNCTION

Algorithm 5.10 shows how theOffset Subst() function calculates the offset for subset

atoms. The method is similar to that used by theOffset Memb() function, except the final

index is offset by the total number of holds and member atoms.

Algorithm 5.10 Offset Subst()

FUNCTION Off Subst(grp0, grp1, int, type)

CASE type OF

sub :

offset =

(grp0 · |θ.sg| · |θ.int|) +
(grp1 · |θ.int|) +

132

CHAPTER 5. IMPLEMENTATION ISSUES

int

acc :

offset =

(|θ.sg|2 · |θ.int|) +
(grp0 · |θ.ag| · |θ.int|) +
(grp1 · |θ.int|) +
int

obj :

offset =
(|θ.sg|2 · |θ.int|) +
(|θ.ag|2 · |θ.int|) +
(grp0 · |θ.og| · |θ.int|) +
(grp1 · |θ.int|) +
int

ENDCASE

RETURN TotH + TotM + offset

ENDFUNCTION

5.3.3 Populating the Policy Base

Now, we describe the process of storing the different components of the policy into the

policy base structures shown in Section 5.3.1. In this section, this process is broken up

into several policy base operators that the policy parser can call as it parses a language LT

policy.

Registering Entities and Intervals

Before the policy base can be made to perform any task, it must first be made aware of all

entities and intervals defined in the policy. The PB.AddEntity(), PB.AddInterval() and

PB.AddIntervalEP () operators are called by the parser as it goes through the entity and

interval declarations of the policy.

The PB.AddEntity(id, type) function shown in Algorithm 5.11 registers the identifier

id of type type to the appropriate list in the symbol table.

Algorithm 5.11 PB.AddEntity()

FUNCTION PB.AddEntity(id, type)

CASE type OF

sub-sin :

PB.symtab.ss.Add(id)

133

CHAPTER 5. IMPLEMENTATION ISSUES

sub-grp :

PB.symtab.sg.Add(id)

acc-sin :

PB.symtab.as.Add(id)

acc-grp :

PB.symtab.ag.Add(id)

obj-sin :

PB.symtab.os.Add(id)

obj-grp :

PB.symtab.og.Add(id)

ENDCASE

ENDFUNCTION

Algorithm 5.12 shows the PB.AddInterval(id) operator which registers the interval

identifier id to the interval list in the symbol table and the interval network object. While

reading the policy, if the parser encounters a declaration of a well-defined interval, it makes

a call to the PB.AddIntervalEP () function (Algorithm 5.13) instead. This function reg-

isters the interval identifier to both the symbol table and the network object, then binds the

interval with the given end points in the network object.

Algorithm 5.12 PB.AddInterval()

FUNCTION PB.AddInterval(id)

PB.symtab.int.Add(id);

PB.netwk.AddInt(id);

ENDFUNCTION

Algorithm 5.13 PB.AddIntervalEP()

FUNCTION PB.AddIntervalEP(id, ep0, ep1)

PB.AddInterval(id)

PB.netwk.Bind(id, ep0, ep1)

ENDFUNCTION

Adding Temporal Interval Constraints

When the parser encounters a temporal constraint, the PB.AddRelation() operator shown

in Algorithm 5.14 is called. The operator normalises the given interval expression first

before passing it on to the network object one relation at a time. Note that as shown in

Algorithm 5.4, the effects of each added relation is propagated to the entire network.

Algorithm 5.14 PB.AddRelation()

134

CHAPTER 5. IMPLEMENTATION ISSUES

FUNCTION PB.AddRelation(rexp)

rlist = NormaliseExp(rexp)

FOR i = 0 TO (|rlist| - 1) DO

PB.netwk.AddRel(rlist[i].int0, rlist[i].int1, rlist[i].rs)

ENDDO

ENDFUNCTION

Adding Authorisation Statements

The operators shown in Algorithms 5.15, 5.16 and 5.17 are called by the parser to register

initial state rules, authorisation constraint rules and policy update declarations, respectively.

While the operator PB.AddInitially() simply adds the initial expression to the initial facts

table one fact at a time, the PB.AddConstraint() and PB.AddUpdate() operators add

their entries directly into the appropriate table in the policy base.

Algorithm 5.15 PB.AddInitially()

FUNCTION PB.AddInitially(exp)

FOR i = 0 TO (|exp| - 1) DO

PB.inittab.Add(exp[i])

ENDDO

ENDFUNCTION

Algorithm 5.16 PB.AddConstraint()

FUNCTION PB.AddConstraint(exp0, exp1, exp2, rexp)

cnode = (exp0, exp1, exp2, NormaliseExp(rexp))

PB.consttab.Add(cnode)

ENDFUNCTION

Algorithm 5.17 PB.AddUpdate()

FUNCTION PB.AddUpdate(u, exp0, exp1, rexp)

unode = (u, exp0, exp1, NormaliseExp(rexp))

PB.updatetab.Add(unode)

ENDFUNCTION

Policy Update Sequence Manipulation

Algorithms 5.18, 5.19 and 5.20 are the policy base operators that correspond to the seq add,

seq del and seq list language LT statements, respectively.

Algorithm 5.18 PB.AddSequence()

135

CHAPTER 5. IMPLEMENTATION ISSUES

FUNCTION PB.AddSequence(u, ilist)

snode = (u, ilist)

PB.seqtab.Add(snode)

ENDFUNCTION

Algorithm 5.19 PB.DelSequence()

FUNCTION PB.DelSequence(index)

PB.seqtab.Del(index)

ENDFUNCTION

Algorithm 5.20 PB.ListSequence()

FUNCTION PB.ListSequence()

RETURN PB.seqtab

ENDFUNCTION

5.3.4 Calculating the Answer Set

Once the policy update sequence table has been populated by the sequence manipulation

operators described above, the policy base must be made to generate answer sets based

on the stored policies and updates. The answer sets must be generated prior to any query

evaluation requests. This process, of course, is triggered by the parser when it encounters

the compute statement in the language LT policy.

The GenNLP () function in Algorithm 3.1 and the rest of the functions in Section 3.2.3

illustrates how a language L domain is translated into a normal logic program and from

answer sets derived from that normal logic program, how queries are evaluated. This section

focuses on extending these methods to generate answer sets from language LT domains, as

well as showing how these techniques are applied to the policy base structures.

Firstly, we need to formally define a stable models object capable of generating answer

sets from normal logic programs. Definition 5.3 formalises a suitable object based on the

interface provided by the SModels system in [47, 59].

Definition 5.3 An SModels object SM is a stable models implementation with support for

the following operations:

1. SM .Init() initialises the object. Any previous operations are reset.

2. SM .RuleBegin() marks the beginning of a rule.

3. SM .RuleHead(α) registers the atom α as the head of the rule.

136

CHAPTER 5. IMPLEMENTATION ISSUES

4. SM .RuleBody(α, τ) registers the atom α, whose negation-as-failure value is τ , as

a body of the current rule.

5. SM .RuleEnd() marks the ending of the current rule.

6. SM .GetAnswerSets() returns a list of answer sets.

With the stable model object defined, we can now define the policy base operation that

generates an answer set based on the policy stored. Algorithm 5.21 shows the policy base

operation that extends the original GenNLP () function to generate an answer set.

Algorithm 5.21 PB.GenAnswerSets()

FUNCTION PB.GenAnswerSets()

SM.Init()

TransInitStateRules(PB.inittab, SM)

TransConstRules(PB.consttab, PB.symtab, PB.seqtab, PB.netwk, SM)

TransUpdateRules(PB.updatetab, PB.symtab, PB.seqtab, PB.netwk, SM)

GenInherRules(PB.symtab, PB.seqtab, SM)

GenTransRules(PB.symtab, PB.seqtab, SM)

GenInertRules(PB.symtab, PB.seqtab, SM)

GenRefleRules(PB.symtab, PB.seqtab, SM)

GenTempoRules(PB.symtab, PB.seqtab, PB.netwk, SM)

GenConsiRules(PB.symtab, PB.seqtab, SM)

RETURN SM.GetAnswerSets()

ENDFUNCTION

Note that most of the functions called by PB.GenAnswerSets() are similar to the

functions defined in Section 3.2.3. These functions require only little modifications to gen-

erate a normal logic program from a language LT domain. In fact, the only major difference

is that the new functions must support the language LT atoms that include an additional

temporal interval parameter. This means that most of the rule-generating functions are ex-

tended simply by the addition of an extra interval loop, which passes intervals to the new

Encode() function discussed in Section 5.3.2.

Generating Temporal Rules

Recall that Section 4.4.2 has shown that translating a language LT domain to a normal logic

program requires the generation of temporal relation rules. The semantics of the language

tells us that the purpose of these rules is to assert that an atom that holds in a particular time

interval ι must also hold in every other interval ι′ that is “within” ι, that is, ι′ is equal, is

137

CHAPTER 5. IMPLEMENTATION ISSUES

during, starts or finishes ι. Algorithm 5.22 shows the GenTempoRules() function which

generates these rules.

Algorithm 5.22 GenTempoRules()

FUNCTION GenTempoRules(θ, ψ, NET, SM)

GenHldsTempoRules(θ, ψ, NET, SM)

GenMembTempoRules(θ, ψ, NET, SM)

GenSubsTempoRules(θ, ψ, NET, SM)

ENDFUNCTION

The GenHldsTempoRules() function shown in Algorithm 5.23, as the name implies,

generates the temporal rules for holds atoms. The first loop goes through every policy

update state while the next 3 loops goes through all defined entities. The fifth and sixth loop

goes through all possible pairs of intervals defined in the symbol table.

Inside these loops, the relation between the interval pair is retrieved from the interval

network structure. The if-statement ensures that one interval is “within” the other. The num-

ber 101 is the sum of the values of the relations equals, during, starts and finishes as defined

in Table 5.2. Thus, if the relation between the pair of intervals is a subset of the relation set

{equal, during, starts, finishes}, the holds temporal rules are generated. A similar method is

used for the other two functions GenMembTempoRules() and GenSubsTempoRules().

Algorithm 5.23 GenHldsTempoRules()

FUNCTION GenHldsTempoRules(θ, ψ, NET, SM)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|θ.s| - 1) DO

FOR k = 0 TO (|θ.a| - 1) DO

FOR l = 0 TO (|θ.o| - 1) DO

FOR m = 0 TO (|θ.int| - 1) DO

FOR n = 0 TO (|θ.int| - 1) DO

rs = NET.get(m, n)

IF (rs | 101) == 101 THEN

α0 = {θ.s[j], θ.a[k], θ.o[l], θ.int[n]}
α1 = {θ.s[j], θ.a[k], θ.o[l], θ.int[m]}
SM.RuleBegin()

SM.RuleHead(Encode(α0, i, true))

SM.RuleBody(Encode(α1, i, true), true)

SM.RuleEnd()

SM.RuleBegin()

SM.RuleHead(Encode(α0, i, false))

SM.RuleBody(Encode(α1, i, false), true)

138

CHAPTER 5. IMPLEMENTATION ISSUES

SM.RuleEnd()

ENDIF

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

ENDFUNCTION

Translating Constraint and Policy Update Rules

The language L versions of the TransConstRules() and TransUpdateRules() functions

defined in Algorithm 3.3 and Algorithm 3.4 assume that expressions are already grounded.

In this section, we extend these functions to handle the interval relations of language LT as

well as ground variables.

First, we define the following functions to be used to ground the variables:

• GetV List(exp) returns a list of variable identifiers that occur in the given expression

exp.

• GenTupleList(vlist) returns a list of tuples, given a list of variables vlist. Each

tuple in the returned list contains entities and intervals of the same type as the corre-

sponding variable in vlist.

• CheckTuple(tuple, rlist, NET) returns true if the intervals in tuple satisfy the

interval relations specified in rlist.

• Replace(vlist, tuple, exp). Given a list of variables vlist, a list of entities and

intervals tuple and an expression exp, the function returns the expression ε with all

variables in vlist replaced by corresponding entities and intervals from tuple.

The TransConstRules() function shown in Algorithm 5.24 starts by creating a list of

variables vlist that occurs in the constraint expressions. With this list, a list of tuples tlist

is generated by the use of the GenTupleList() function. As the algorithm goes through

each tuple in tlist, it checks whether the intervals in the current tuple satisfies the temporal

constraints associated with the current constraint rule. If the tuple is valid, the algorithm

then uses this to ground all the variables in the expressions. Once grounded, the expressions

are passed to the SM object to construct the normal logic program rule.

Algorithm 5.24 TransConstRules()

139

CHAPTER 5. IMPLEMENTATION ISSUES

FUNCTION TransConstRules(ω, θ, ψ, NET, SM)

FOR i = 0 TO (|ω| - 1) DO

vlist.Init()

vlist.Append(GetV List(ω[i].exp)

vlist.Append(GetV List(ω[i].pcn)

vlist.Append(GetV List(ω[i].ncn)

tlist = GenTupleList(θ, vlist)

rlist = NormaliseExp(ω[i].rexp)

FOR j = 0 TO (|tlist| - 1) DO

IF CheckTuple(tlist[j], rlist, NET) THEN

ε0 = Replace(vlist, tlist[j], ω[i].exp)

ε1 = Replace(vlist, tlist[j], ω[i].pcn)

ε2 = Replace(vlist, tlist[j], ω[i].ncn)

FOR k = 0 TO (|θ| - 1) DO

FOR l = 0 TO (|ε0| - 1) DO

SM.RuleBegin()

SM.RuleHead(Encode(ε0[l].atom, k, ε0[l].truth))

FOR m = 0 TO (|ε1| - 1) DO

SM.RuleBody(Encode(ε1[m].atom, k, ε1[m].truth), true)

ENDDO

FOR n = 0 TO (|ε2| - 1) DO

SM.RuleBody(Encode(ε2[n].atom, k, ε2[n].truth), false)

ENDDO

SM.RuleEnd()

ENDDO

ENDDO

ENDIF

ENDDO

ENDDO

ENDFUNCTION

A similar method is used by the TransUpdateRules() function shown in Algorithm

5.25.

Algorithm 5.25 TransUpdateRules()

FUNCTION TransUpdateRules(ω, θ, ψ, NET, SM)

FOR i = 0 TO (|ψ| - 1) DO

FOR j = 0 TO (|ω| - 1) DO

IF ψ[i].name == ω[j].name THEN

upd = GndUpdate(ω[j], ψ[i].ilist)

vlist.Init()

140

CHAPTER 5. IMPLEMENTATION ISSUES

vlist.Append(GetV List(upd.pre)

vlist.Append(GetV List(upd.pst)

tlist = GenTupleList(θ, vlist)

rlist = NormaliseExp(ω[j].rexp)

FOR k = 0 TO (|tlist| - 1) DO

IF CheckTuple(tlist[k], rlist, NET) THEN

ε0 = Replace(vlist, tlist[k], upd.pre)

ε1 = Replace(vlist, tlist[k], upd.pst)

FOR l = 0 TO (|ε1| - 1) DO

SM.RuleBegin()

SM.RuleHead(Encode(ε1[l].atom, i + 1, ε1[l].truth))

FOR m = 0 TO (|ε0| - 1) DO

SM.RuleBody(Encode(ε0[l].atom, i, ε0[l].truth), true)

ENDDO

SM.RuleEnd()

ENDDO

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

ENDFUNCTION

5.3.5 Evaluating Query Expressions

Once the answer sets have been generated, the policy base can accept query evaluation

requests through the PB.EvaluateExp(exp) operator. The operator works by checking

the presence of queried facts or their negations in every answer sets generated. Algorithm

5.26 shows how a given expression exp can be evaluated against a list of answer sets Λ, as

returned by the PB.GenAnswerSets() operator.

Algorithm 5.26 PB.EvaluateExp()

FUNCTION PB.EvaluateExp(exp, Λ)
result = true

FOR i = 0 TO (|exp| - 1) DO

rv = EvaluateFact(exp[i], |PB.seqtab|, Λ)
IF rv == false THEN

RETURN false

ELSE IF rv == unknown THEN

result = unknown

ENDIF

141

CHAPTER 5. IMPLEMENTATION ISSUES

ENDDO

RETURN result

ENDFUNCTION

The PB.EvaluateExp() operator evaluates each fact from the given query expression

by calling the function EvaluateFact() shown in Algorithm 5.27 which evaluates a single

fact ρ in state σ, against a list of answer sets Λ.

Algorithm 5.27 EvaluateFact()

FUNCTION EvaluateFact(ρ, σ, Λ)
IF IsFactIn(Encode(ρ.atom, σ, ρ.truth), Λ) THEN

RETURN true

ELSE IF IsFactIn(Encode(ρ.atom, σ, NOT ρ.truth), Λ) THEN

RETURN false

ENDIF

RETURN unknown

ENDFUNCTION

The function IsFactIn() simply returns a boolean value to indicate whether or not the

given fact index index, as returned by the Encode() function, is present in every answer set

in Λ.

Algorithm 5.28 IsFactIn()

FUNCTION IsFactIn(index, Λ)
FOR i = 0 TO (|Λ| - 1) DO

IF NOT Λ[i].Find(index) THEN

RETURN false

ENDIF

ENDDO

RETURN true

ENDFUNCTION

5.4 Experimental Analysis and Discussions

So far, the chapter has shown the full implementation details of two systems. First, we de-

scribed a simple but efficient implementation of a temporal interval reasoner engine based

on Allen’s interval algebra and propagation algorithm [2]. Secondly, the chapter discussed

in detail the algorithms and data structures that make up the extended PolicyUpdater autho-

risation system from an implementation point of view.

142

CHAPTER 5. IMPLEMENTATION ISSUES

In this section, we focus our attention to the performance of the implementation by

comparing the computation times of the system against different domain sizes. Like the

tests described in Section 3.3, these tests were conducted on an AMD Athlon XP 1800+

machine with 1GB of RAM, running Debian GNU/Linux 3.1 with a plain Linux 2.6.16.20

kernel. These tests are based on the latest version of PolicyUpdater 2 (Vlad 2.0.1) compiled

with Tribe 0.4.0 and SModels 2.31.

Table 5.12 shows the domain sizes used for each test case. SEs and SEg are the numbers

of singular and group entities, respectively; Sι is the number of intervals; SI is the number

of initial state facts; SCa and SCι denotes the number of authorisation and interval constraint

rules, respectively; SU is the number of policy update definitions; SS is the number of policy

updates in the sequence list; and SQ is the number of facts to be queried.

SEs SEg Sι SI SCa SCι SU SS SQ
1 4 3 3 3 1 3 1 1 4
2 24 23 3 3 1 3 1 1 4
3 104 3 3 3 1 3 1 1 4
4 4 103 3 3 1 3 1 1 4
5 24 23 3 103 1 3 1 1 4
6 24 23 3 3 101 3 1 1 4
7 24 23 3 3 1 3 101 1 4
8 24 23 3 3 1 3 101 101 4
9 24 23 3 3 1 3 1 1 104

10 24 23 3 103 1 3 101 101 4
11 24 23 3 3 101 3 101 101 4
12 24 23 3 103 101 3 101 101 104
13 104 103 3 103 101 3 101 101 104
14 24 23 103 3 1 3 1 1 4
15 24 23 23 3 1 103 1 1 4
16 24 23 103 3 1 103 1 1 4
17 104 103 103 103 101 103 101 101 104

Table 5.12: Seventeen Test Cases with Different Domain Sizes

The tests were conducted using the code listing in Example 4.2 as the base case (test case

1). For all other test cases, entities, intervals, rules and/or queries were added or removed to

match the domain sizes shown in Table 5.12. Note that the language LT test program used

in these tests is similar to the language L test program used in the tests described in Section

3.3. In fact, the first 13 test cases were chosen to match those used to test PolicyUpdater 1.

Each test case was executed 10 times. Table 5.13 shows the average execution times in

seconds for each test case. TC is the total time spent by the system to compute the answer

143

CHAPTER 5. IMPLEMENTATION ISSUES

TC TQ
1 0.009178 0.002628
2 2.645432 2.972180
3 0.665680 0.904036
4 142.137921 141.881564
5 2.658151 3.002972
6 2.671187 2.997832
7 2.652458 2.955020
8 143.035015 154.559300
9 2.660288 80.922608

10 143.035966 156.002920
11 143.105090 155.951128
12 143.341907 1937.619320
13 - -
14 91.684118 117.606152
15 20.186534 24.214144
16 92.138305 117.525392
17 - -

Table 5.13: Average Computation Times in Seconds (PolicyUpdater 2)

sets, while TQ is the total time used by the system to evaluate all the queries. In test cases

13 and 17, the test system’s memory was exhausted before the tests were completed. This

is due to the very large number of rules generated from the test program.

The overall conclusion that can be drawn from these test results is that PolicyUpdater

2’s execution times are much higher, as compared to that of PolicyUpdater 1 (shown in

Table 3.8). This can be explained by the increase in the number of atoms. Recall that the

main difference between language L and language LT is that the latter includes an interval

attribute in its atom definition. The consequence of this is that the number of atoms in

the domain increases significantly as the number of intervals increases. Of course, as the

number of atoms increases, so does the size of the answer sets, which in turn means greater

execution times. To support this argument, we compare test cases 14 and 15. In test case 14,

the number of intervals was increased to 103 while the number of interval constraints were

left at 3. In test case 15, the number of interval constraints was increased only to 23 but

the interval constraints were increased to 103. The results show that increasing the number

of intervals has a more profound effect on computation and query times than increasing the

interval constraints.

The algorithms and data structures discussed in this chapter were designed as a com-

promise between efficiency and simplicity. Although certain algorithms used by the system

144

CHAPTER 5. IMPLEMENTATION ISSUES

can be optimised for speed or size, these optimisations would introduce another level of

complexity that fall beyond the scope of this thesis.

145

Chapter 6

Conclusion

Authorisation or access control is an important part of information security systems. Al-

though several access control approaches and models have been proposed and used over

the years, very few maintain a good balance between flexibility, expressiveness and imple-

mentation. That is, those access control systems with simple implementations often lack

the ability to express complex authorisation rules or the flexibility required for policy up-

dates. On the other hand, those models that can handle policy updates, conditional rules or

temporal constraints often lack the details necessary for full system implementation.

For example, several systems, such as those proposed by Jajodia et al. [32, 33, 34] and

Bertino et al. [13] provide flexible logic-based approaches to access control, but they do not

address implementation issues. In contrast, the scheme proposed by Ray [49] focuses on

the implementation of an authorisation system with support for policy updates, but it does

not support negative authorisations and conditional rules. Several authorisation models

like [11, 12, 53] allow authorisation rules to have temporal properties expressed as time

intervals. However, these systems lack the means to express the relationships between these

time intervals themselves.

In this thesis, we have presented not only a logic-based authorisation model, but the

implementation details of a full authorisation system with support for policy updates and

temporal interval relations.

The PolicyUpdater system is an authorisation system that uses a first-order logic lan-

guage, language L, to represent the authorisation policy or policy base. A language L atom,

composed of a subject, an access right and an object, is used to construct authorisation facts

and rules, which in turn defines the policy base. Through the use of this language, the

PolicyUpdater system is capable of expressing and evaluating both positive and negative

authorisations from policies with conditional logic rules. The two key features of this lan-

guage, and therefore the system, is its ability to express default authorisations in conditional

rules and conditional policy update rules which can be applied in sequence.

146

CHAPTER 6. CONCLUSION

We have also shown from the semantics of language L that from a given policy ex-

pressed in this language and a sequence of policy updates, an extended logic program can

be generated, which in turn can be translated into a normal logic program. In our implemen-

tation, we have shown that through these translations and the stable model semantics, a set

of answer sets can be generated from any consistent language L policy. The PolicyUpdater

system uses these answer sets to evaluate authorisation queries.

In Chapter 3, we have outlined the data structures and algorithms that make up the Pol-

icyUpdater system. The performance analysis of the system shows that, given a realistic

input size of policies and queries, our implementation performs reasonably well in terms of

computation speed. In the case study, we have shown an application in which the PolicyUp-

dater system is used as an authorisation system for a web server.

The extended version of the system, PolicyUpdater 2, addressed the issue of expressing

temporal constraints in the authorisation policy. This is made possible by the integration

of the well-established temporal interval algebra into a logic-based authorisation language,

language LT . This non-trivial extension of language L redefines the authorisation atom

to include a time interval within which the authorisation is valid. More importantly, the

interval algebra gives the language the ability to express relations between the time intervals

themselves, thereby permitting the expression of rules that contain these interval relations.

For example, languageLT allows rules such as “IfAlice is allowed to read file f at interval

i0, then Bob should be allowed to read file f at interval i1, where i1 is during i0”. As with

language L, we have shown how language LT policies can be translated into normal logic

programs for evaluation using the stable model semantics.

Like the first version, the full implementation details of the extended version of Poli-

cyUpdater were shown in Chapter 5, including the implementation of a separate temporal

interval relation reasoning engine. The chapter also included the details of the integration

of this engine with the rest of the authorisation system.

To the best of our knowledge, PolicyUpdater is the first fully implemented logic-based

authorisation system that is capable of expressing default authorisation rules and has support

for dynamic and conditional policy updates. Similarly, we believe that PolicyUpdater 2 is

the first logic-based authorisation system with the same capabilities as version 1, and with

the ability to support temporal constraints expressed in the interval relation algebra.

At the time of writing, the latest version of the PolicyUpdater 2 implementation is Vlad

2.0.1. This version includes full variable grounding, dynamic policy updates and temporal

constraints support. The latest version of the PolicyUpdater 1 implementation is Vlad 1.4.3.

Since the PolicyUpdater source code is over 14,000 lines long, the code listing is not in-

cluded in this thesis. However, the source code for both versions is available for download

from the project website:

147

CHAPTER 6. CONCLUSION

http://www.scm.uws.edu.au/˜jcrescin/projects/policyupdater/index.html

As for future work, there are several possible directions worth pursuing. On the theoret-

ical side, we note that the PolicyUpdater system handles conflicts in authorisation rules by

giving negative authorisations a higher precedence over positive ones. Although our tests

shows that this conservative discipline is sufficiently safe for most applications, other ap-

plications or environments may require a more fine-tuned conflict resolution strategy. One

such strategy might be to incorporate the expression of prioritised authorisation rules into

the authorisation language. This way, a conflict is resolved by giving a higher precedence to

rules with higher priorities. Another possible future work direction is to extend the system

to allow disjunctive information to be used in authorisation rules.

On the implementation side, we note that testing a temporal interval relation network for

consistency is an intractable problem. Although our tests with small networks have shown

negligible effects on computation time, the effects will be a problem for networks with

thousands of interval relations. One possible future work is to replace the system’s support

for the full interval algebra with one of its tractable sub-algebras [35] while maintaining

equivalent, or near equivalent expressive power.

148

Appendix A

Language Specification

A.1 Language L in Backus-Naur Form

<start> : <program>

<program> : <head> <body> <tail>

<head> : <nil>

<body> : <entity-section>

<initial-section>

<constraint-section>

<update-section>

<directive-section>

<tail> : <nil>

<entity-section> : <nil> |

<entity-stmt-list>

<initial-section> : <nil> |

<inital-stmt-list>

<constraint-section> : <nil> |

<constraint-stmt-list>

<update-section> : <nil> |

149

APPENDIX A. LANGUAGE SPECIFICATION

<update-stmt-list>

<directive-section> : <nil> |

<directive-stmt-list>

<entity-stmt-list> : <entity-stmt> |

<entity-stmt-list>

<entity-stmt>

<initial-stmt-list> : <initial-stmt> |

<initial-stmt-list>

<initial-stmt>

<constraint-stmt-list> : <constraint-stmt> |

<constraint-stmt-list>

<constraint-stmt>

<update-stmt-list> : <update-stmt> |

<update-stmt-list>

<update-stmt>

<directive-stmt-list> : <directive-stmt> |

<directive-stmt-list>

<directive-stmt>

<entity-stmt> : <entity>

<entity-declaration>

<semicolon>

<entity-declaration> : <sub-entity-decl> |

<obj-entity-decl> |

<acc-entity-decl> |

<sub-grp-entity-decl> |

<obj-grp-entity-decl> |

<acc-grp-entity-decl>

<sub-entity-decl> : <sub-type>

150

APPENDIX A. LANGUAGE SPECIFICATION

<sub-entity-list>

<acc-entity-decl> : <acc-type>

<acc-entity-list>

<obj-entity-decl> : <obj-type>

<obj-entity-list>

<sub-grp-entity-decl> : <sub-grp-type>

<sub-grp-entity-list>

<acc-grp-entity-decl> : <acc-grp-type>

<acc-grp-entity-list>

<obj-grp-entity-decl> : <obj-grp-type>

<obj-grp-entity-list>

<sub-entity-list> : <identifier> |

<sub-entity-list> <comma>

<identifier>

<obj-entity-list> : <identifier> |

<obj-entity-list> <comma>

<identifier>

<acc-entity-list> : <identifier> |

<acc-entity-list> <comma>

<identifier>

<sub-grp-entity-list> : <identifier> |

<sub-grp-entity-list>

<comma> <identifier>

<obj-grp-entity-list> : <identifier> |

<obj-grp-entity-list>

<comma> <identifier>

151

APPENDIX A. LANGUAGE SPECIFICATION

<acc-grp-entity-list> : <identifier> |

<acc-grp-entity-list>

<comma> <identifier>

<initial-stmt> : <initially> <expression>

<semicolon>

<constraint-stmt> : <always> <expression>

<implied-clause>

<with-clause> <semicolon>

<implied-clause> : <nil> |

<implied> <by> <expression>

<with-clause> : <nil> |

<with> <absence>

<expression>

<update-stmt> : <identifier>

<update-var-def> <causes>

<expression> <if-clause>

<semicolon>

<if-clause> : <nil> |

<if> <expression>

<update-var-def> : <open-parent>

<close-parent> |

<open-parent>

<update-var-list>

<close-parent>

<update-var-list> : <identifier> |

<update-var-list>

<comma> <identifier>

<directive-stmt> : <sequence-stmt> |

152

APPENDIX A. LANGUAGE SPECIFICATION

<compute-stmt> |

<query-stmt>

<sequence-stmt> : <sequence>

<sequence-cmd-clause>

<semicolon>

<compute-stmt> : <compute> <semicolon>

<query-stmt> : <query> <expression>

<semicolon>

<sequence-cmd-clause> : <sequence-add-clause> |

<sequence-del-clause> |

<sequence-lst-clause>

<sequence-add-clause> : <add> <update-ref-def>

<sequence-del-clause> : <number>

<sequence-lst-clause> : <list>

<update-ref-def> : <identifier> <open-parent>

<update-ref-ident-args>

<close-parent>

<update-ref-ident-args> : <nil> |

<update-ref-ident-list>

<update-ref-ident-list> : <identifier> |

<update-ref-ident-list>

<comma> <identifier>

<expression> : <expression> <logical-op>

<boolean-fact> |

<boolean-fact>

153

APPENDIX A. LANGUAGE SPECIFICATION

<boolean-fact> : <not> <fact> |

<fact>

<fact> : <holds-fact> |

<subst-fact> |

<memb-fact>

<holds-fact> : <holds> <open-parent>

<identifier> <comma>

<identifier> <comma>

<identifier> <close-parent>

<subst-fact> : <subset> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<memb-fact> : <member> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<logical-op> : <and>

<identifier> : <alpha> <alphanum>

<and> : <comma>

<not> : !

<holds> : holds

<member> : memb

<subset> : subst

<initially> : initially

<causes> : causes

154

APPENDIX A. LANGUAGE SPECIFICATION

<implied> : implied

<by> : by

<with> : with

<absence> : absence

<always> : always

<if> : if

<query> : query

<compute> : compute

<sequence> : seq

<entity> : entity

<sub-type> : sub

<obj-type> : obj

<acc-type> : acc

<sub-grp-type> : sub-grp

<obj-grp-type> : obj-grp

<acc-grp-type> : acc-grp

<add> : add

 : del

155

APPENDIX A. LANGUAGE SPECIFICATION

<list> : list

<open-parent> : (

<close-parent> :)

<comma> : ,

<semicolon> : ;

<underscore> : _

<digit> : [0-9]

<number> : <digit> |

<number> <digit>

<alpha> : [a-zA-Z]

<alphanum> : <alpha> |

<digit> |

<underscore>

A.2 Language LT in Backus-Naur Form

<start> : <program>

<program> : <head> <body> <tail>

<head> : <nil>

<body> : <identifier-section>

<initial-section>

<relation-section>

<constraint-section>

<update-section>

<directive-section>

156

APPENDIX A. LANGUAGE SPECIFICATION

<tail> : <nil>

<identifier-section> : <nil> |

<identifier-stmt-list>

<initial-section> : <nil> |

<inital-stmt-list>

<relation-section> : <nil> |

<relation-stmt-list>

<constraint-section> : <nil> |

<constraint-stmt-list>

<update-section> : <nil> |

<update-stmt-list>

<directive-section> : <nil> |

<directive-stmt-list>

<identifier-stmt-list> : <identifier-stmt> |

<identifier-stmt-list>

<identifier-stmt>

<initial-stmt-list> : <initial-stmt> |

<initial-stmt-list>

<initial-stmt>

<relation-stmt-list> : <relation-stmt> |

<relation-stmt-list>

<relation-stmt>

<constraint-stmt-list> : <constraint-stmt> |

<constraint-stmt-list>

<constraint-stmt>

157

APPENDIX A. LANGUAGE SPECIFICATION

<update-stmt-list> : <update-stmt> |

<update-stmt-list>

<update-stmt>

<directive-stmt-list> : <directive-stmt> |

<directive-stmt-list>

<directive-stmt>

<identifier-stmt> : <entity>

<entity-declaration>

<semicolon> |

<interval>

<interval-declaration>

<semicolon>

<entity-declaration> : <sub-entity-decl> |

<obj-entity-decl> |

<acc-entity-decl> |

<sub-grp-entity-decl> |

<obj-grp-entity-decl> |

<acc-grp-entity-decl>

<interval-declaration> : <interval-decl> |

<interval-declaration>

<comma> <interval-decl>

<sub-entity-decl> : <sub-type>

<sub-entity-list>

<acc-entity-decl> : <acc-type>

<acc-entity-list>

<obj-entity-decl> : <obj-type>

<obj-entity-list>

<sub-grp-entity-decl> : <sub-grp-type>

<sub-grp-entity-list>

158

APPENDIX A. LANGUAGE SPECIFICATION

<acc-grp-entity-decl> : <acc-grp-type>

<acc-grp-entity-list>

<obj-grp-entity-decl> : <obj-grp-type>

<obj-grp-entity-list>

<sub-entity-list> : <identifier> |

<sub-entity-list> <comma>

<identifier>

<obj-entity-list> : <identifier> |

<obj-entity-list> <comma>

<identifier>

<acc-entity-list> : <identifier> |

<acc-entity-list> <comma>

<identifier>

<sub-grp-entity-list> : <identifier> |

<sub-grp-entity-list>

<comma> <identifier>

<obj-grp-entity-list> : <identifier> |

<obj-grp-entity-list>

<comma> <identifier>

<acc-grp-entity-list> : <identifier> |

<acc-grp-entity-list>

<comma> <identifier>

<interval-decl> : <identifier>

<interval-enpoint-decl> |

<identifier>

<interval-endpoint-decl> : <open-bracket> <number>

<comma> <number>

159

APPENDIX A. LANGUAGE SPECIFICATION

<close-braket>

<initial-stmt> : <initially> <expression>

<semicolon>

<relation-stmt> : <relation> <relation-list>

<semicolon>

<relation-list> : <relation-atom> |

<relation-list> <comma>

<relation-atom>

<relation-atom> : <rel-eql-atom> |

<rel-bef-atom> |

<rel-dur-atom> |

<rel-ovr-atom> |

<rel-met-atom> |

<rel-sta-atom> |

<rel-fin-atom>

<rel-eql-atom> : <eql> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<rel-bef-atom> : <bef> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<rel-dur-atom> : <dur> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<rel-ovr-atom> : <ovr> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<rel-met-atom> : <met> <open-parent>

160

APPENDIX A. LANGUAGE SPECIFICATION

<identifier> <comma>

<identifier> <close-parent>

<rel-sta-atom> : <sta> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<rel-fin-atom> : <fin> <open-parent>

<identifier> <comma>

<identifier> <close-parent>

<constraint-stmt> : <always> <expression>

<implied-clause>

<with-clause>

<where-clause>

<semicolon>

<implied-clause> : <nil> |

<implied> <by> <expression>

<with-clause> : <nil> |

<with> <absence>

<expression>

<where-clause> : <nil> |

<where> <relation-list>

<update-stmt> : <identifier>

<update-var-def> <causes>

<expression> <if-clause>

<where-clause> <semicolon>

<if-clause> : <nil> |

<if> <expression>

<update-var-def> : <open-parent>

<close-parent> |

161

APPENDIX A. LANGUAGE SPECIFICATION

<open-parent>

<update-var-list>

<close-parent>

<update-var-list> : <identifier> |

<update-var-list> <comma>

<identifier>

<directive-stmt> : <sequence-stmt> |

<compute-stmt> |

<query-stmt>

<sequence-stmt> : <sequence>

<sequence-cmd-clause>

<semicolon>

<compute-stmt> : <compute> <semicolon>

<query-stmt> : <query> <expression>

<semicolon>

<sequence-cmd-clause> : <sequence-add-clause> |

<sequence-del-clause> |

<sequence-lst-clause>

<sequence-add-clause> : <add> <update-ref-def>

<sequence-del-clause> : <number>

<sequence-lst-clause> : <list>

<update-ref-def> : <identifier> <open-parent>

<update-ref-ident-args>

<close-parent>

<update-ref-ident-args> : <nil> |

<update-ref-ident-list>

162

APPENDIX A. LANGUAGE SPECIFICATION

<update-ref-ident-list> : <identifier> |

<update-ref-ident-list>

<comma> <identifier>

<expression> : <expression> <logical-op>

<boolean-fact> |

<boolean-fact>

<boolean-fact> : <not> <fact> |

<fact>

<fact> : <holds-fact> |

<subst-fact> |

<memb-fact>

<holds-fact> : <holds> <open-parent>

<identifier> <comma>

<identifier> <comma>

<identifier> <comma>

<identifier> <close-parent>

<subst-fact> : <subset> <open-parent>

<identifier> <comma>

<identifier> <comma>

<identifier> <close-parent>

<memb-fact> : <member> <open-parent>

<identifier> <comma>

<identifier> <comma>

<identifier> <close-parent>

<logical-op> : <and>

<identifier> : <alpha> <alphanum>

<and> : <comma>

163

APPENDIX A. LANGUAGE SPECIFICATION

<not> : !

<holds> : holds

<member> : memb

<subset> : subst

<initially> : initially

<relation> : relation

<causes> : causes

<implied> : implied

<by> : by

<with> : with

<absence> : absence

<where> : where

<always> : always

<if> : if

<query> : query

<compute> : compute

<sequence> : seq

<entity> : entity

164

APPENDIX A. LANGUAGE SPECIFICATION

<interval> : interval

<sub-type> : sub

<obj-type> : obj

<acc-type> : acc

<sub-grp-type> : sub-grp

<obj-grp-type> : obj-grp

<acc-grp-type> : acc-grp

<eql> : equals

<bef> : before

<dur> : during

<ovr> : overlaps

<met> : meets

<sta> : starts

<fin> : finishes

<add> : add

 : del

<list> : list

<open-parent> : (

<close-parent> :)

165

APPENDIX A. LANGUAGE SPECIFICATION

<open-bracket> : [

<close-bracket> :]

<comma> : ,

<semicolon> : ;

<underscore> : _

<digit> : [0-9]

<number> : <digit>

<alpha> : [a-zA-Z]

<alphanum> : <alpha> |

<digit> |

<underscore>

166

Bibliography

[1] Abadi M., Burrows M., Lampson B., Plotkin G., A Calculus for Access Control in

Distributed Systems. ACM Transactions on Programming Languages and Systems,

Vol. 15, No. 4, pp. 706-734, 1993.

[2] Allen J. F., Maintaining Knowledge about Temporal Intervals. Communications of the

ACM, Vol. 26, No. 11, pp. 832-843, 1983.

[3] Apache Software Foundation, Authentication, Authorization and Access Control.

Apache HTTP Server Version 2.1 Documentation, 2004.

http://httpd.apache.org/docs-2.1/

[4] Atluri V., Gal A., An Authorization Model for Temporal and Derived Data: Securing

Information Portals. ACM Transactions on Information and System Security, Vol. 5,

No. 1, pp. 62-94, 2002.

[5] Bai Y., Varadharajan V., A Language for Specifying Sequences of Authorization

Transformations and Its Applications. In Proceedings of the First International Con-

ference on Information and Communication Security, pp. 39-49, 1997.

[6] Bai Y., Varadharajan V., On Transformation of Authorization Policies. Data and

Knowledge Engineering, Vol. 45, No. 3, pp. 333-357, 2003.

[7] Bai Y., Zhang Y., Varadharajan V., On the Sequence of Authorization Policy Transfor-

mations. International Journal of Information Security, Vol. 4, No. 1-2, pp. 120-131,

2005.

[8] Baral C., Knowledge, Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, UK. pp. 99-100, 2003.

[9] Bell D. E., LaPadula L. J., Secure Computer Systems: Mathematical Foundations.

Technical Report MTR-2547, Vol. 1, Mitre Corporation, 1973.

167

BIBLIOGRAPHY

[10] Bell D. E., LaPadula L. J., Secure Computer Systems: Mathematical Foundations and

Model. Technical Report M74-244, Vol. 1, Mitre Corporation, 1974.

[11] Bertino E., Bettini C., Samarati P., A Temporal Authorization Model. In Proceedings

of the 2nd ACM Conference on Computer and Communications Security, pp. 26-135,

1994.

[12] Bertino E., Bettini C., Ferrari E., Samarati P., An Access Control Model Support-

ing Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database

Systems, Vol. 23, No. 3, pp. 231-285, 1999.

[13] Bertino E., Buccafurri F., Ferrari E., Rullo P., A Logic-Based Approach for Enforcing

Access Control. Journal of Computer Security, Vol. 8, No. 2-3, pp. 109-140, 2000.

[14] Bertino E., Mileo A., Provetti A., Policy Monitoring with User-Preferences in PDL. In

Proceedings of IJCAI-03 Workshop for Nonmonotonic Reasoning, Action and Change,

pp. 37-44, 2003.

[15] Bertino E., Mileo A., Provetti A., PDL with Preferences. In Proceedings of the 6th

IEEE International Workshop on Policies for Distributed Systems and Networks (POL-

ICY 2005), pp. 213-222, 2005.

[16] Castano S., Fugini M., Martella G., Samarati P., Database Security. Addison-Wesley

Publishing Co., 1995.

[17] Chomicki J., Lobo J., Naqvi S., A Logic Programming Approach to Conflict Reso-

lution in Policy Management. In Proceedings of the 7th International Conference on

Principles of Knowledge Representation and Reasoning (KR2000), pp. 121-132, 2000.

[18] Conway R. W., Maxwell W. L., Morgan H. L., On the Implementation of Security

Measures in Information Systems. Communications of the ACM Vol. 15, No. 4, pp.

211-220, 1972.

[19] Crescini V. F., Zhang Y., A Logic Based Approach for Dynamic Access Control.

In Proceedings of the 17th Australian Joint Conference on Artificial Intelligence (AI

2004, LNCS/LNAI) Vol. 3339, pp. 623-635, 2004.

[20] Crescini V. F., Zhang Y., PolicyUpdater: A System for Dynamic Access Control. In-

ternational Journal of Information Security, Vol. 5, No. 3, pp. 145-165, 2006.

[21] Crescini V. F., Zhang Y., Expressing Temporal Constraints with the PolicyUpdater

System. (to be submitted), 2006.

168

BIBLIOGRAPHY

[22] Crescini V. F., Zhang Y., Wang W., Web Server Authorisation with the PolicyUp-

dater Access Control System. In Proceedings of the IADIS International Conference

(WWW/Internet 2004), Vol. 2, pp. 945-948, 2004.

[23] Farby R., Capability-Based Addressing. Communications of the ACM, Vol. 17, No. 7,

pp. 403-412, 1974.

[24] Ferraiolo D. F., Kuhn D. R., Role Based Access Controls, In Proceedings of the 15th

National Computer Security Conference, pp. 554-563, 1992.

[25] Ferraiolo D. F., Cugini J. Kuhn D. R., Role Based Access Control (RBAC): Features

and Motivations. In Proceedings of the 11th Annual Computer Security Applications

Conference (CSAC-95), pp. 241-248, 1995.

[26] Freuder E. C., A Sufficient Condition for Backtrack-Free Search. Journal of the ACM,

Vol. 29, No. 1, pp. 24-32, 1982.

[27] Gelfond M., Lifschitz V., The Stable Model Semantics for Logic Programming. In

Proceedings of the Fifth International Conference on Logic Programming, pp. 1070-

1080, 1988.

[28] Gelfond M., Lifschitz V., Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing, Vol. 9, No. 3-4, pp. 365-386, 1991.

[29] Graham G. S., Denning P. J., Protection - Principles and Practice. In Proceedings of

the AFIPS Spring Joint Computer Conference, Vol. 40, pp. 427-429, 1972.

[30] Halpern J. Y., Weissman V., Using First-Order Logic to Reason About Policies. In

Proceedings of the 16th IEEE Computer Security Foundations Workshop, pp. 187-

201, 2003.

[31] Harrison M. H., Ruzzo W. L., Ullman J. D., Protection in Operating Systems. Com-

munications of the ACM, Vol. 19, No. 8, pp. 461-471, 1976.

[32] Jajodia S., Samarati P., Subrahmanian V. S., A Logical Language for Expressing Au-

thorizations. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,

pp. 31-42, 1997.

[33] Jajodia S., Samarati P., Subrahmanian V. S., Bertino E., A Unified Framework for En-

forcing Multiple Access Control Policies. In Proceedings of the 1997 ACM SIGMOD

International Conference on Management of Data, pp. 474-485, 1997.

169

BIBLIOGRAPHY

[34] Jajodia S., Samarati P., Sapino M. L., Subrahmanian V. S., Flexible Support for Mul-

tiple Access Control Policies. ACM Transactions on Database Systems, Vol. 26, No.

2, pp. 214-260, 2001.

[35] Krokhin A., Jeavons P., Jonsson P., Reasoning about Temporal Relations: The

Tractable Subalgebras of Allen’s Interval Algebra. Journal of the ACM, Vol. 50, No.

5, pp. 591-640, 2003.

[36] Ladkin P. B., Reinefeld A., Fast Algebraic Methods for Interval Constraint Problems.

Annals of Mathematics and Artificial Intelligence, Vol. 19, No. 3-4, pp. 383-411, 1997.

[37] Lampson, B. W., Protection. In Proceedings of the 5th Princeton Symposium on Infor-

mation Science and Systems, pp. 437-464, 1971.

[38] Laurie B., Laurie P., Apache: The Definitive Guide (3rd Edition). O’Reilly & Asso-

ciates Inc., CA, 2003.

[39] Levy, H. M., Capability-Based Computer Systems. DEC Press, 1984.

[40] Li N., Grosof B. N., Feigenbaum J., Delegation Logic: A Logic-Based Approach

to Distributed Authorization. ACM Transactions on Information and System Security

(TISSEC), Vol. 6, No. 1, pp. 128-171, 2003.

[41] Lin F., Zhao X., On Odd and Even Cycles in Normal Logic Programs. In Proceed-

ings of the 19th National Conference on Artificial Intelligence (AAAI-04) and 16th

Conference on Innovative Applications of Artificial Intelligence, pp. 80, 2004.

[42] Lobo J., Bhatia R., Naqvi S., A Policy Description Language. In Proceedings of the

16th AAAI National Conference on Artificial Intelligence and 11th Conference on In-

novative Applications of Artificial Intelligence, pp. 291-298, 1999.

[43] Mackworth, A.K., Consistency in Networks of Relations. Artificial Intelligence, Vol.

8, No. 1, pp. 99-118, 1977.

[44] Meadows C., Policies for Dynamic Upgrading. Database Security, IV: Status and

Prospects (DBSec), pp. 241-250, 1990.

[45] Network Working Group, HTTP 1.1 (RFC 2616). The Internet Society, 1999.

ftp://ftp.isi.edu/in-notes/rfc2616.txt

[46] Network Working Group, HTTP Authentication: Basic and Digest Access Authenti-

cation (RFC 2617). The Internet Society, 1999.

ftp://ftp.isi.edu/in-notes/rfc2617.txt

170

BIBLIOGRAPHY

[47] Niemelä I., Simons P., Smodels - An Implementation of the Stable Model and Well-

Founded Semantics for Normal Logic Programs. In Proceedings of the 4th Interna-

tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-97)

and Lecture Notes in Computer Science, Vol. 1265, pp. 421-430, 1997.

[48] Organization for the Advancement of Structured Information Standards (OASIS), Ex-

tensible Access Control Markup Language (XACML) Specification.

http://www.oasis-open.org/committees/xacml/

[49] Ray I., Real-Time Update of Access Control Policies. Data & Knowledge Engineer-

ing, Vol. 49, No. 3, pp. 287-309, 2004.

[50] Reiter R., A Logic for Default Reasoning. Artificial Intelligence, Vol. 13, No. 1-2, pp.

81-132, 1980.

[51] Ruan C., Varadharajan V., Zhang Y., Logic-Based Reasoning on Delegatable Autho-

rizations. In Proceedings of the 13th International Symposium on Foundations of In-

telligent Systems (LNCS), Vol. 2366, pp. 185-193, 2002.

[52] Ruan C., Varadharajan V., Zhang Y., Evaluation of Authorization with Delegation and

Negation. In Proceedings of the International Intelligent Information Processing and

Web Mining Conference (IIPWM-03), pp. 547-551, 2003.

[53] Ruan C., Varadharajan V., Zhang Y., A Logic Model for Temporal Authorization Del-

egation with Negation. In Proceedings of the 6th International Conference on Infor-

mation Security (ISC2003), Vol. 2851, pp. 310-324, 2003.

[54] Sandhu R. S., Transformation of Access Rights. In Proceedings of the IEEE Sympo-

sium on Research in Security and Privacy, pp. 259-268, 1989.

[55] Sandhu R. S., Coyne E. J., Feinstein H. L., Youman C. E., Role-Based Access Control

Models. IEEE Computer, Vol. 29, No. 2, pp. 38-47, 1996.

[56] Sandhu R. S., Ganta S., On the Expressive Power of the Unary Transformation Model.

In Proceedings of the Third European Symposium on Research in Computer Security,

pp. 301-318, 1994.

[57] Sandhu R. S., Suri G. S., Non-Monotonic Transformation of Access Rights. In Pro-

ceedings of the IEEE Symposium on Research in Security and Privacy, pp. 148-161,

1992.

171

BIBLIOGRAPHY

[58] Simons P., Efficient Implementation of the Stable Model Semantics for Normal Logic

Programs. Research Reports Number A35, Helsinki University of Technology, 1995.

http://www.tcs.hut.fi/Publications/reports/A35.ps.Z

[59] Simons P., Niemelä I., Soininen T., Extending and Implementing the Stable Model

Semantics. Artificial Intelligence, Vol. 138, No. 1-2, pp. 181-234, 2002.

[60] Valdez-Perez R. E., The Satisfiability of Temporal Constraint Networks. In Proceed-

ings of the Sixth National Conference on Artificial Intelligence (AAAI-87), pp. 256-

260, 1987.

[61] Van Beek P. G., Cohen, R., Exact and Approximate Reasoning about Temporal Rela-

tions. Computational Intelligence, Vol. 6., No. 3, pp. 132-147, 1990.

[62] Van Beek P. G., Manchak D. W., The Design and Experimental Analysis of Algorithms

for Temporal Reasoning. Journal of Artificial Intelligence Research, Vol. 4, pp. 1-18,

1996.

[63] Vilain M. B., Kautz H. A., Van Beek P. G., Constraint Propagation Algorithms for

Temporal Reasoning: A Revised Report. In Readings in Qualitative Reasoning about

Physical Systems, pp. 373-381, 1989.

[64] Woo T. Y. C., Lam S. S., Authorization in Distributed Systems: A Formal Approach.

In Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 33-

51, 1992.

[65] Woo T. Y. C., Lam S. S., Authorization in Distributed Systems: A New Approach.

Journal of Computer Security, Vol. 2, No. 2-3, pp. 107-136, 1993.

[66] Zhang Y., Handling Defeasibilities in Action Domains. Theory and Practice of Logic

Programming, Vol. 3, No. 3, pp. 329-376, 2003.

172

